1-9 A-D E-G H-M N-P Q-S T-Z

Бо́рная кислота́ ( boric acid )


 


Бо́рная кислота́ (ортоборная кислота или лат. acidum Boricum) — слабая, одноосновная кислота Льюиса, часто используемая в качестве инсектицида, антисептика, огнезащитного состава, поглотителя нейтронов или предшественника для получения иных химических составов. Имеет химическую формулу H3BO3 (или B(OH)3).

Бесцветное кристаллическое вещество в виде чешуек без запаха, имеет слоистую триклинную решётку, в которой молекулы кислоты соединены водородными связями в плоские слои, слои соединены между собой межмолекулярными связями, длина которых составляет 272пм. Расстояние между соседними слоями — 318пм.

Метаборная кислота (HBO2) также представляет собой бесцветные кристаллы. Она существует в трёх модификациях — наиболее устойчивой γ-НВО2 с кубической решёткой, β-НВО2 с моноклинной решёткой и α-НВО2 с ромбической решёткой.

При нагревании ортоборная кислота теряет воду и сначала переходит в метаборную кислоту, затем в тетраборную H2B4O7. При дальнейшем нагревании обезвоживается до борного ангидрида.

Водные растворы борной кислоты являются смесью полиборных кислот общей формулы Н3m-2nВmО3m-n. В природе встречается в виде минерала сассолина.



Нахождение в природе
В природе свободная борная кислота встречается в виде минерала сассолина, в горячих источниках и минеральных водах.

Получение
Борная кислота может быть получена путём смешения буры (Тетрабората натрия) с минеральной кислотой, например, соляной:

{\displaystyle {\mathsf {Na_{2}B_{4}O_{7}\cdot 10H_{2}O+2HCl\rightarrow 4H_{3}BO_{3}+2NaCl+5H_{2}O}}}{\displaystyle {\mathsf {Na_{2}B_{4}O_{7}\cdot 10H_{2}O+2HCl\rightarrow 4H_{3}BO_{3}+2NaCl+5H_{2}O}}}
Также является продуктом гидролиза диборана или тригалогенидов бора[1]:

{\displaystyle {\mathsf {B_{2}H_{6}+6H_{2}O\rightarrow 2H_{3}BO_{3}+6H_{2}}}}{\displaystyle {\mathsf {B_{2}H_{6}+6H_{2}O\rightarrow 2H_{3}BO_{3}+6H_{2}}}}
{\displaystyle {\mathsf {BCl_{3}+3H_{2}O\rightarrow H_{3}BO_{3}+3HCl}}}{\displaystyle {\mathsf {BCl_{3}+3H_{2}O\rightarrow H_{3}BO_{3}+3HCl}}}
Свойства
Борная кислота проявляет очень слабые кислотные свойства. Она сравнительно мало растворима в воде. Её кислотные свойства обусловлены не отщеплением протона Н+, а присоединением гидроксильного аниона:

{\displaystyle {\mathsf {B(OH)_{3}+H_{2}O\rightarrow H[B(OH)_{4}]}}}{\mathsf  {B(OH)_{3}+H_{2}O\rightarrow H[B(OH)_{4}]}}
Ka = 5.8⋅10−10 моль/л; pKa = 9.24.
Она легко вытесняется из растворов своих солей большинством других кислот. Соли её, называемые боратами, производятся обычно от различных полиборных кислот, чаще всего — тетраборной Н2В4О7, которая является значительно более сильной кислотой, чем ортоборная.

Очень слабые признаки амфотерности B(OH)3 проявляет, образуя малоустойчивый гидросульфат бора В(HSO4)3.

При нейтрализации ортоборной кислоты щелочами в водных растворах не образуются ортобораты, содержащие ион (ВО3)3−, поскольку ортобораты гидролизуются практически полностью, вследствие слишком малой константы образования [В(ОН)4]−. В растворе образуются тетрабораты, метабораты или соли других полиборных кислот:

{\displaystyle {\mathsf {2NaOH+4H_{3}BO_{3}\longrightarrow Na_{2}B_{4}O_{7}+7H_{2}O}}}{\mathsf  {2NaOH+4H_{3}BO_{3}\longrightarrow Na_{2}B_{4}O_{7}+7H_{2}O}}
Избытком щелочи они могут быть переведены в метабораты:
{\displaystyle {\mathsf {2NaOH+Na_{2}B_{4}O_{7}\longrightarrow 4NaBO_{2}+H_{2}O}}}{\mathsf  {2NaOH+Na_{2}B_{4}O_{7}\longrightarrow 4NaBO_{2}+H_{2}O}}
Мета- и тетрабораты гидролизуются, но в меньшей степени (реакции, обратные приведённым).

В подкисленных водных растворах боратов устанавливаются следующие равновесия:

{\displaystyle {\mathsf {3H[B(OH)_{4}]\rightleftarrows H^{+}+[B_{3}O_{3}(OH)_{4}]^{-}+5H_{2}O}}}{\mathsf  {3H[B(OH)_{4}]\rightleftarrows H^{+}+[B_{3}O_{3}(OH)_{4}]^{-}+5H_{2}O}}
{\displaystyle {\mathsf {[B_{3}O_{3}(OH)_{4}]^{-}+OH^{-}\rightleftarrows [B_{3}O_{3}(OH)_{5}]^{2-}}}}{\mathsf  {[B_{3}O_{3}(OH)_{4}]^{-}+OH^{-}\rightleftarrows [B_{3}O_{3}(OH)_{5}]^{{2-}}}}
При нагревании борная кислота растворяет оксиды металлов, образуя соли.

Со спиртами в присутствии концентрированной серной кислоты образует эфиры:

{\displaystyle {\mathsf {H_{3}BO_{3}+\ 3CH_{3}OH\longrightarrow \ 3H_{2}O+\ B(OCH_{3})_{3}}}}{\mathsf  {H_{3}BO_{3}+\ 3CH_{3}OH\longrightarrow \ 3H_{2}O+\ B(OCH_{3})_{3}}}
Образование борнометилового эфира В(ОСН3)3 является качественной реакцией на Н3ВО3 и соли борных кислот, при поджигании борнометиловый эфир горит красивым ярко-зелёным пламенем.

Борная кислота в медицине
Борный спирт (лат. Solutio Acidi borici spirituosa) — раствор борной кислоты в этиловом спирте (как правило, в 70 % этаноле).

Спиртовые растворы борной кислоты в концентрации 0,5 %, 1 %, 2 %, 3 %, 5 % готовятся на 70 % этиловом спирте и применяются в качестве антисептика и как противозудное средство при обтирании здоровых участков кожи вокруг очагов пиодермии, а также в качестве ушных капель.

Борная кислота может быть опасна только при бесконтрольном приёме внутрь. Опасная концентрация в организме человека (а особенно ребёнка) может возникнуть при регулярном применении. Смертельная доза при отравлении через рот для взрослого человека составляет 15-20 г, для детей — 4-5 г [2].

Борная кислота применяется в медицине с 1860-х годов как антисептическое средство, не раздражающее ран и не имеющее вкуса, запаха и цвета. В современной медицине противомикробная эффективность борной кислоты считается низкой.

Использование борной кислоты в качестве антисептического средства для детей, а также беременных и кормящих женщин было запрещено 2 февраля 1987 года Министерством здравоохранения СССР по рекомендации Фармакологического комитета с формулировкой: «…запретить использование борной кислоты в качестве антисептического средства у детей грудного возраста, а также у женщин в период беременности и лактации в связи с её низкой активностью и высокой токсичностью»[3].

Применение
В ядерных реакторах в качестве поглотителя нейтронов, растворённого в теплоносителе.
Борное удобрение.
В лабораториях применяют для приготовления буферных растворов.
В медицине — как самостоятельное дезинфицирующее средство для взрослых, а также в виде 2%-го раствора — для промывки кожи после попадания щелочей.
Также на основе борной кислоты производятся различные комбинированные препараты (группа АТХ D08AD), например паста Теймурова.
В фотографии — в составе мелкозернистых проявителей и кислых фиксажей для создания слабой кислотной среды.
В пищевой промышленности зарегистрирована как пищевая добавка E284 (на территории России эта добавка не входит в список разрешённых к применению[4]).
В ювелирном деле — как основа флюсов для пайки золотосодержащих сплавов.
В литейном производстве — связующее при кислой футеровке печей, компонент защиты струи от окисления при разливке магниевых сплавов.
В быту — уничтожение тараканов, муравьёв, клопов.
В производстве керамики, оптоволокна, стекловолокна, стекла[5],
В качестве антипирена для защиты древесины,
В составе электролитов для меднения и никелирования.
Как люминофор или в качестве компонента люминофора для учебных экспериментов по люминесценции веществ

Систематическое
наименование Ортоборная кислота
Хим. формула H3BO3


Борная кислота.

Торговое наименование:
Борная кислота

Международное наименование:
Борная кислота (Boric acid)

Групповая принадлежность:
Антисептическое средство

Описание действующего вещества (МНН):
Борная кислота
 
 
SYNONYMS Boracic Acid, Hydrogen Borate, Orthoboric Acid;
Boracic acid; Hydrogen orthoborate; Trihydroxyborane CAS NO. 10043-35-3; Boracic Acid, Hydrogen Borate, Orthoboric Acid; Boracic acid; Hydrogen orthoborate; Trihydroxyborane; Borsäure; ácido bórico; Acide borique; Orthoboric acid; TRIS-BORAT-EDTA PUFFER; TRIS-BORATE-EDTA; TRIS-BORATE-EDTA BUFFER; TRIS-BORATE-EDTA DISODIUM; Ant flip; basilitb; boric; Boric acid (BH3O3); Boric acid (H3BO3); boricacid(h3bo3); Boricacid,medicinal; Borofax; Boron hydroxide; Borsaure
CAS NO:10043-35-3, 11113-50-1 (Base); 13813-79-1 (orthoboric acid); 13460-50-9, 13780-71-7 (metaboric acid);                                                                                                                                   Boric acid, also called hydrogen borate, boracic acid, and orthoboric acid is a weak, monobasic Lewis acid of boron. However, some of its behaviour towards some chemical reactions suggest it to be tribasic acid in the Brønsted sense as well. Boric acid is often used as an antiseptic, insecticide, flame retardant, neutron absorber, or precursor to other chemical compounds. It has the chemical formula H3BO3 (sometimes written B(OH)3), and exists in the form of colorless crystals or a white powder that dissolves in water. When occurring as a mineral, it is called sassolite.Occurrence
Boric acid, or sassolite, is found mainly in its free state in some volcanic districts, for example, in the Italian region of Tuscany, the Lipari Islands and the US state of Nevada. In these volcanic settings it issues, mixed with steam, from fissures in the ground. It is also found as a constituent of many naturally occurring minerals – borax, boracite, ulexite (boronatrocalcite) and colemanite. Boric acid and its salts are found in seawater. It is also found in plants, including almost all fruits.

Boric acid was first prepared by Wilhelm Homberg (1652–1715) from borax, by the action of mineral acids, and was given the name sal sedativum Hombergi ("sedative salt of Homberg"). However borates, including boric acid, have been used since the time of the ancient Greeks for cleaning, preserving food, and other activities.reparation
Boric acid may be prepared by reacting borax (sodium tetraborate decahydrate) with a mineral acid, such as hydrochloric acid:

Na2B4O7·10H2O + 2 HCl → 4 B(OH)3 [or H3BO3] + 2 NaCl + 5 H2O
It is also formed as a by product of hydrolysis of boron trihalides and diborane:[4]

B2H6 + 6 H2O → 2 B(OH)3 + 6 H2
BX3 + 3 H2O → B(OH)3 + 3 HX (X = Cl, Br, I)
Properties
Boric acid is soluble in boiling water. When heated above 170 °C, it dehydrates, forming metaboric acid (HBO2):

H3BO3 → HBO2 + H2O
Metaboric acid is a white, cubic crystalline solid and is only slightly soluble in water. Metaboric acid melts at about 236 °C, and when heated above about 300 °C further dehydrates, forming tetraboric acid, also called pyroboric acid (H2B4O7):

4 HBO2 → H2B4O7 + H2O
The term boric acid may sometimes refer to any of these compounds. Further heating (to about 330 °C)[5] leads to boron trioxide.

H2B4O7 → 2 B2O3 + H
2O
There are conflicting interpretations for the origin of the acidity of aqueous boric acid solutions. Raman spectroscopy of strongly alkaline solutions has shown the presence of B(OH)−
4 ion,[6] leading some to conclude that the acidity is exclusively due to the abstraction of OH− from water:

B(OH)3 + H2O ⇌ B(OH)−4 +  H+ (K = 7.3×10−10; pK = 9.14) or more properly expressed in the aqueous solution:

B(OH)3 + 2 H2O ⇌ B(OH)−4 + H3O+
This may be characterized[7][8][9] as Lewis acidity of boron toward OH−, rather than as Brønsted acidity.

Polyborate anions are formed at pH 7–10 if the boron concentration is higher than about 0.025 mol/L. The best known of these is the `tetraborate` ion, found in the mineral borax:

4 [B(OH)4]− + 2  H+ ⇌ [B4O5(OH)4]2− + 7 H2O
Boric acid makes an important contribution to the absorption of low frequency sound in seawater.

Reactions
With polyols containing cis-vicinal diols, such as glycerol and mannitol, the acidity of the boric acid solution is increased. With different mannitol concentrations, the pK of B(OH)3 extends on five orders of magnitude (from 9 to 4): this exacerbed acidity of boric acid in the presence of mannitol is also sometimes referred as "mannitoboric acid".[11] Greenwood and Earnshawn (1997)[12] refer to a pK value of 5.15 while a pK value of 3.80 is also reported in Vogel`s book. This is due to the formation of a boron-mannitol chelate, [B(C6H8O2(OH)4)2]−, also known as mannitoborate complex, according to the following complexation reaction releasing a proton:

(mannitoboric acid)
boric acid
B(OH)3 + 2 mannitolC6H14O6
 ⇌ 
mannitoborate complex
[B(C6H8O2(OH)4)2]− + 3 H2O + H+
(pKa ranging from 4 to 9, depending on the mannitol concentration)
This feature is used in analytical chemistry to determine the boron content in aqueous solution by potentiometric titration with a strong base, such as NaOH.[12]

Boric acid also dissolves in anhydrous sulfuric acid:

B(OH)3 + 6 H2SO4 → B(HSO4)4− + 2 HSO4− + 3 H3O+
Boric acid reacts with alcohols to form borate esters, B(OR)3 where R is alkyl or aryl. A dehydrating agent, such as concentrated sulfuric acid is typically added:

B(OH)3 + 3 ROH → B(OR)3 + 3 H2O
A variety of salts are also known, involving the planar trigonal BO33– borate anion.

Molecular and crystal structure
The three oxygen atoms form a trigonal planar geometry around the boron. The B-O bond length is 136 pm and the O-H is 97 pm. The molecular point group is C3h.

Crystalline boric acid consists of layers of B(OH)3 molecules held together by hydrogen bonds of length 272 pm. The distance between two adjacent layers is 318 pm.Toxicology
Based on mammalian median lethal dose (LD50) rating of 2,660 mg/kg body mass, boric acid is only poisonous if taken internally or inhaled in large quantities. The Fourteenth Edition of the Merck Index indicates that the LD50 of boric acid is 5.14 g/kg for oral dosages given to rats, and that 5 to 20 g/kg has produced death in adult humans. For comparison`s sake, the LD50 of salt is reported to be 3.75 g/kg in rats according to the Merck Index. According to the Agency for Toxic Substances and Disease Registry, "The minimal lethal dose of ingested boron (as boric acid) was reported to be 2–3 g in infants, 5–6 g in children, and 15–20 g in adults. [...] However, a review of 784 human poisonings with boric acid (10–88 g) reported no fatalities, with 88% of cases being asymptomatic."[15]

Long-term exposure to boric acid may be of more concern, causing kidney damage and eventually kidney failure (see links below). Although it does not appear to be carcinogenic, studies in dogs have reported testicular atrophy after exposure to 32 mg/kg bw/day for 90 days. This level is far lower than the LD50.

According to the CLH report for boric acid published by the Bureau for Chemical Substances Lodz, Poland, boric acid in high doses shows significant developmental toxicity and teratogenicity in rabbit, rat, and mouse fetuses as well as cardiovascular defects, skeletal variations, and mild kidney lesions.
At a 2010 European Diagnostics Manufacturing Association (EDMA) Meeting, several new additions to the Substance of Very High Concern (SVHC) candidate list in relation to the Registration, Evaluation, Authorisation and Restriction of Chemicals Regulations 2007 (REACH) were discussed. Following the registration and review completed as part of REACH, the classification of Boric Acid CAS 10043-35-3 / 11113-50-1 is listed from 1 December 2010 is H360FD (May damage fertility. May damage the unborn child.)

Uses
Industrial
The primary industrial use of boric acid is in the manufacture of monofilament fiberglass usually referred to as textile fiberglass. Textile fiberglass is used to reinforce plastics in applications that range from boats, to industrial piping to computer circuit boards.

In the jewelry industry, boric acid is often used in combination with denatured alcohol to reduce surface oxidation and firescale from forming on metals during annealing and soldering operations.

Boric acid is used in the production of the glass in LCD flat panel displays.

In electroplating, boric acid is used as part of some proprietary formulas. One such known formula calls for about a 1 to 10 ratio of H3BO3 to NiSO4, a very small portion of sodium lauryl sulfate and a small portion of H2SO4.

Boric acid, mixed with borax (sodium tetraborate decahydrate) at the weight ratio of 4:5, is highly soluble in water, though they are not so soluble separately.[26] The solution is used for fire retarding agent of wood by impregnation.

It is also used in the manufacturing of ramming mass, a fine silica-containing powder used for producing induction furnace linings and ceramics.

Boric acid is one of the most commonly used substances that can counteract the harmful effects of reactive hydrofluoric acid (HF) after an accidental contact with the skin. It works by forcing the free F− anions into complex salts. This process defeats the extreme toxicity of hydrofluoric acid, particularly its ability to sequester ionic calcium from blood serum which can lead to cardiac arrest and bone decomposition; such an event can occur from just minor skin contact with HF.

Boric acid is added to borax for use as welding flux by blacksmiths.

Boric acid, in combination with polyvinyl alcohol (PVA) or silicone oil, is used to manufacture Silly Putty.

Boric acid is also present in the list of chemical additives used for hydraulic fracturing (fracking) in the Marcellus Shale in Pennsylvania.[31] Indeed, it is often used in conjonction with guar gum as cross-linking and gelling agent for controlling the viscosity and the rheology of the fracking fluid injected at high pressure in the well. Indeed, it is important to control the fluid viscosity for keeping in suspension on long transport distances the grains of the propping agents aimed at maintaining the cracks in the shales sufficiently open to facilitate the gas extraction after the hydraulic pressure is relieved.[32][33][34] The rheological properties of borate cross-linked guar gum hydrogel mainly depend on the pH value.

Medical
Boric acid can be used as an antiseptic for minor burns or cuts and is sometimes used in salves and dressings, such as boracic lint. Boric acid is applied in a very dilute solution as an eye wash. Dilute boric acid can be used as a vaginal douche to treat bacterial vaginosis due to excessive alkalinity,as well as candidiasis due to non-albicans candida.As an antibacterial compound, boric acid can also be used as an acne treatment. It is also used as prevention of athlete`s foot, by inserting powder in the socks or stockings. Various preparations can be used to treat some kinds of otitis externa (ear infection) in both humans and animals. The preservative in urine sample bottles in the UK is boric acid.

Boric acid solutions used as an eye wash or on abraded skin are known to be toxic, particularly to infants, especially after repeated use; this is because of its slow elimination rate.

Insecticidal
Boric acid was first registered in the US as an insecticide in 1948 for control of cockroaches, termites, fire ants, fleas, silverfish, and many other insects. The product is generally considered to be safe to use in household kitchens to control cockroaches and ants. It acts as a stomach poison affecting the insects` metabolism, and the dry powder is abrasive to the insects` exoskeletons. Boric acid also has the reputation as "the gift that keeps on killing" in that cockroaches that cross over lightly dusted areas do not die immediately, but that the effect is like shards of glass cutting them apart. This often allows a roach to go back to the nest where it soon dies. Cockroaches, being cannibalistic, eat others killed by contact or consumption of boric acid, consuming the powder trapped in the dead roach and killing them, too.

Preservation
In combination with its use as an insecticide, boric acid also prevents and destroys existing wet and dry rot in timbers. It can be used in combination with an ethylene glycol carrier to treat external wood against fungal and insect attack. It is possible to buy borate-impregnated rods for insertion into wood via drill holes where dampness and moisture is known to collect and sit. It is available in a gel form and injectable paste form for treating rot affected wood without the need to replace the timber. Concentrates of borate-based treatments can be used to prevent slime, mycelium, and algae growth, even in marine environments.

Boric acid is added to salt in the curing of cattle hides, calfskins, and sheepskins. This helps to control bacterial development, and helps to control insects.

pH buffer
Distribution between boric acid and borate ion versus pH assuming pKa = 9.0 (e.g. salt-water swimming pool)
Boric acid predominates in solution below pH 9
Buffer capacity of the boric acid - borate system versus pH assuming pKa = 9.0 (e.g. salt-water swimming pool)
Boric acid buffers against rising pH in swimming pools
Boric acid in equilibrium with its conjugate base the borate ion is widely used (in the concentration range 50 - 100 ppm boron equivalents) as a primary or adjunct pH buffer system in swimming pools. Boric acid is a weak acid, with pKa (the pH at which buffering is strongest because the free acid and borate ion are in equal concentrations) of 9.24 in pure water at 25 °C. But apparent pKa is substantially lower in swimming pool or ocean waters because of interactions with various other molecules in solution. It will be around 9.0 in a salt-water pool. No matter which form of soluble boron is added, within the acceptable range of pH and boron concentration for swimming pools, boric acid is the predominant form in aqueous solution, as shown in the accompanying figure. The boric acid - borate system can be useful as a primary buffer system (substituting for the bicarbonate system with pKa1 = 6.0 and pKa2 = 9.4 under typical salt-water pool conditions) in pools with salt-water chlorine generators that tend to show upward drift in pH from a working range of pH 7.5 - 8.2. Buffer capacity is greater against rising pH (towards the pKa around 9.0), as illustrated in the accompanying graph. The use of boric acid in this concentration range does not allow any reduction in free HOCl concentration needed for pool sanitation, but it may add marginally to the photo-protective effects of cyanuric acid and confer other benefits through anti-corrosive activity or perceived water softness, depending on overall pool solute composition.

Lubrication
Colloidal suspensions of nanoparticles of boric acid dissolved in petroleum or vegetable oil can form a remarkable lubricant on ceramic or metal surfaces with a coefficient of sliding friction that decreases with increasing pressure to a value ranging from 0.10 to 0.02. Self-lubricating H3BO3 films result from a spontaneous chemical reaction between water molecules and B2O3 coatings in a humid environment. In bulk-scale, an inverse relationship exists between friction coefficient and Hertzian contact pressure induced by applied load.

Boric acid is used to lubricate carrom and novuss boards, allowing for faster play.

Nuclear power
Boric acid is used in some nuclear power plants as a neutron poison. The boron in boric acid reduces the probability of thermal fission by absorbing some thermal neutrons. Fission chain reactions are generally driven by the probability that free neutrons will result in fission and is determined by the material and geometric properties of the reactor. Natural boron consists of approximately 20% boron-10 and 80% boron-11 isotopes. Boron-10 has a high cross-section for absorption of low energy (thermal) neutrons. By increasing boric acid concentration in the reactor coolant, the probability that a neutron will cause fission is reduced. Changes in boric acid concentration can effectively regulate the rate of fission taking place in the reactor. Boric acid is used only in pressurized water reactors (PWRs) whereas boiling water reactors (BWRs) employ control rod pattern and coolant flow for power control. BWRs use an aqueous solution of boric acid and borax or sodium pentaborate for an emergency shut down system. Boric acid may be dissolved in spent fuel pools used to store spent fuel elements. The concentration is high enough to keep neutron multiplication at a minimum. Boric acid was dumped over Reactor 4 of the Chernobyl nuclear power plant after its meltdown to prevent another reaction from occurring.[citation needed]

Pyrotechnics
Boron is used in pyrotechnics to prevent the amide-forming reaction between aluminum and nitrates. A small amount of boric acid is added to the composition to neutralize alkaline amides that can react with the aluminum.

Boric acid can be used as a colorant to make fire green. For example, when dissolved in methanol it is popularly used by fire jugglers and fire spinners to create a deep green flame much stronger than copper sulfate.
Agriculture
Boric acid is used to treat or prevent boron deficiencies in plants. It is also used in preservation of grains such as rice and wheat.


Boric acid
Formula: BH3O3
Molecular weight: 61.833
CAS Registry Number: 10043-35-3
Chemical structure: BH3O3Other names: Orthoboric acid; H3-BO3; Boracic acid; Boric acid (BH3O3); Boric acid (H3BO3); Borofax; Boron hydroxide; Boron trihydroxide; NCI-C56417;
 Orthoboric acid (B(OH)3); Borsaure; Three elephant; Ant flip; Homberg`s salt; B(OH)3; Basilit B; Dr.`s 1 Flea Terminator DF; Dr.`s 1 Flea Terminator DFPBO; Dr.`s 1 Flea Terminator DT; 
Dr.`s 1 Flea Terminator DTPBO; Flea Prufe; NSC 81726; Super Flea Eliminator; Trihydroxyborane; Acidum boricum (Salt/Mix); Bluboro (Salt/Mix); Collyrium Eye Wash (Salt/Mix); 
Collyrium Fresh-Eye Drops (Salt/Mix); component of Aci-Jel (Salt/Mix). 10043-35-3 [RN]
11113-50-1 [RN]
11B Labeled boric acid
13813-78-0 [RN]
234-343-4 [EINECS]
Acide borique [French] [ACD/IUPAC Name]
acidum boricum [Latin]
B(OH)3 [Formula]
Boric acid [ACD/IUPAC Name] [Trade name]
Boric acid-11B
Borsäure [German] [ACD/IUPAC Name]
MFCD00011337 [MDL number]
MFCD00151271 [MDL number]
Orthoboric acid
(10B)Orthoboric acid
11129-12-7 [RN]
12258-53-6 [RN]
12795-04-9 [RN]
1303-86-2 [RN]
13460-50-9 [RN]
13813-79-1 [RN]
14149-58-7 [RN]
1697939 [Beilstein]
7440-42-8 [RN]
Acidum boricum
Ant flip
Boracic acid
Boracic Acid, Orthoboric Acid
Borate (H3bo3)
borate ion
Boric acid ACS grade
Boric acid Electrophoresis grade
Boric acid flakes
Boric acid, biochemical grade
Boric Acid, Granular
Boric acid, NF/USP grade
Boric Acid, Powder
Boric acid-d3
BORIC-11B ACID
Borofax
Boron hydroxide
Boron trihydroxide [ACD/IUPAC Name]
Borsaeure
Borsaure
H3-BO3
Heptaoxotetra-Borate(2-)
Homberg`s salt
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:33118
Hydrogen borate [ACD/IUPAC Name]
hydrogen orthoborate
InChI=1S/BH3O3/c2-1(3)4/h2-4H
Kill-off
Kjel-sorb
Orthboric acid
Orthoboricacid
Orthoborsaeure
tetraborate
trihydridoborate
trihydroxidoboron
Trihydroxyborane
Trihydroxyborone
WLN: QBQQ

Boric acid, also known as boracic acid or orthoboric acid, is a naturally occurring compound containing the elements boron, oxygen, and hydrogen (H3BO3). Boric acid crystals are
 white, odorless, and nearly tasteless. It looks like fine table salt in the granular form or like baby powder in the powdered form.

Borates, the general term associated with boron containing minerals such as borax and boric acid, most commonly originate in dried salt lakebeds of deserts or arid areas 
(such as Death Valley, CA, Turkey, and China) or other geographic regions that expose similar deposits (such as the Andes Mountains in South America).

Boric acid crystals were first man-made in 1702 by Wilhelm Homberg who mixed borax and mineral acids with water. The evaporating water left crystals of boric acid and was often 
called “Homberg’s salt.” European researchers soon discovered the compound’s properties as a mild antiseptic and eyewash.

James Wright, a General Electric engineer searching for rubber substitutes during WWII, came upon a remarkable new material by mixing silicone oil with boric acid. The new compound
 had unique properties, acting very much like rubber. It could be stretched to many times its length without breaking and bounced 25% higher than a normal rubber ball. It could even 
pick up the images of most printed material. In 1949 the material was given the name Silly Putty® and it sold faster than any other toy at that time.

Boric acid is one of the most commonly produced borates and is widely used throughout the world in the pharmaceutical and cosmetic industries, as a nutritional supplement, 
flame retardant, in the manufacture of glass and fiberglass, and in the production of wood preservatives to control pests and fungu 
 
CAS No: 10043-35-3
EC No: 233-139-2

Metatags:
borik asit
borik asid
borikasit
borikasid
boric acid
boron oxide hydroxide
boron oksit hidroksit
boron ok
Ataman Chemicals © 2015 All Rights Reserved.