1-9 A-D E-G H-M N-P Q-S T-Z

SODIUM FORMATE

Sodium formate, HCOONa, is the sodium salt of formic acid, HCOOH. It usually appears as a white deliquescent powder.

An organic sodium salt which is the monosodium salt of formic acid.

Systematic IUPAC name: Sodium methanoate
Other names: formic acid, sodium salt, sodium hydrocarbon dioxide

CAS Number: 141-53-7 


Properties
Chemical formula: HCOONa
Molar mass: 68.007 g/mol
Appearance: white granules
deliquescent
Density: 1.92 g/cm3 (20 °C)
Melting point: 253 °C 
Boiling point: decomposes
Solubility in water: 43.82 g/100 mL (0 °C)
97.2 g/100 mL (20 °C)
160 g/100 mL (100 °C)
Solubility: insoluble in ether
soluble in glycerol, alcohol, formic acid


FORMIC ACID, NA SALT
formic acid, sodium salt
Formic acid, sodium salt (1:1)
sodium formiate ChEBI
Sodium methanoate

Preparation: For commercial use, sodium formate is produced by absorbing carbon monoxide under pressure in solid sodium hydroxide at 130 °C and 6-8 bar pressure:

CO + NaOH → HCO2Na
Because of the low-cost and large-scale availability of formic acid by carbonylation of methanol and hydrolysis of the resulting methyl formate, sodium formate is usually prepared by neutralizing formic acid with sodium hydroxide.
Sodium formate is also unavoidably formed as a by-product in the final step of the pentaerythritol synthesis and in the crossed Cannizzaro reaction of formaldehyde with the aldol reaction product trimethylol acetaldehyde [3-hydroxy-2,2-bis(hydroxymethyl)propanal].

In the laboratory, sodium formate can be prepared by neutralizing formic acid with sodium carbonate. It can also be obtained by reacting chloroform with an alcoholic solution of sodium hydroxide.

CHCl3 + 4 NaOH → HCOONa + 3 NaCl + 2 H2O
or by reacting sodium hydroxide with chloral hydrate.

C2HCl3(OH)2 + NaOH → CHCl3 + HCOONa + H2O
The latter method is, in general, preferred to the former because the low aqueous solubility of CHCl3 makes it easier to separate out from the sodium formate solution, by fractional crystallization, than the soluble NaCl would be.

Sodium formate may also be created via the haloform reaction between ethanol and sodium hypochlorite in the presence of a base. This procedure is well documented for the preparation of chloroform.


Physical properties
Sodium formate crystallizes in a monoclinic crystal system with the lattice parameters a = 6,19 Å, b = 6,72 Å, c = 6,49 Å and β = 121,7°.[3]

Chemical properties
On heating, sodium formate decomposes to form sodium oxalate and hydrogen.
The resulting sodium oxalate can be converted by further heating to sodium carbonate upon release of carbon monoxide:

As a salt of a weak acid (formic acid) and a strong base (sodium hydroxide) sodium formate reacts in aqueous solutions basic:

A solution of formic acid and sodium formate can thus be used as a buffer solution.

Sodium formate is slightly water-hazardous and inhibits some species of bacteria but is degraded by others.

Uses
Sodium formate is used in several fabric dyeing and printing processes. 
It is also used as a buffering agent for strong mineral acids to increase their pH, as a food additive (E237), and as a de-icing agent.

In structural biology, sodium formate can be used as a cryoprotectant for X-ray diffraction experiments on protein crystals, which are typically conducted at a temperature of 100 K to reduce the effects of radiation damage.

Sodium formate plays a role in the synthesis of formic acid, it is converted by sulfuric acid via the following reaction equation:

Sodium formate is converted with sulfuric acid to formic acid and sodium sulfate.
The urticating hair of stinging nettles contain sodium formate as well as formic acid.

Solid sodium formate is used as a non-corrosive agent at airports for de-icing of runways in mix with corrosion inhibitors and other additives, which rapidly penetrate solid snow and ice layers, detach them from the asphalt or concrete and melt the ice rapidly. 
Sodium formate was also used as a road deicer in the city of Ottawa from 1987 to 1988.

The high freezing point depression e.g. in comparison to the still frequently used urea (which is effective but problematic due to eutrophication) effectively prevents the re-icing, even at temperatures below −15 °C. 
The thawing effect of the solid sodium formate can even be increased by moistening with aqueous potassium formate or potassium acetate solutions. The degradability of sodium formate is particularly advantageous with a chemical oxygen demand (COD) of 211 mg O2/g compared with the de-icing agents sodium acetate (740 mg O2/g) and urea with (> 2,000 mg O2/g).

Saturated sodium formate solutions (as well as mixtures of other alkali metal formates such as potassium and cesium formate) are used as important drilling and stabilizing aids in gas and oil exploration because of their relatively high density. 
By mixing the corresponding saturated alkali metal formate solutions any densities between 1,0 and 2,3 g/cm3 can be set. 
The saturated solutions are biocidal and long-term stable against microbial degradation. Diluted, on the other hand, they are fast and completely biodegradable.
 As alkali metal formates as drilling aids make it unnecessary to add solid fillers to increase the density (such as barytes) and the formate solutions can be recovered and recycled at the drilling site, formates represent an important advance in exploration technology.

SODIUM FORMATE
141-53-7
Formic acid, sodium salt
Formic acid sodium salt
Salachlor
Formic acid, sodium salt (1:1)
FORMIC ACID, NA SALT
Sodium formate, refined
sodium formiate
Mravencan sodny [Czech]
CCRIS 1037
HSDB 744
UNII-387AD98770
EINECS 205-488-0
MFCD00013101
NSC 77457
CHEBI:62965
Sodium formate, 99%
387AD98770
Sodium formate, ACS reagent
Mravencan sodny
CHEMBL183491
E237
odium formate
sodium-formate
sodium carbanate
Sodium methanoate


1218765-26-4 [RN]
141-53-7 [RN]
205-488-0 [EINECS]
E237
Formiate de sodium [French] [ACD/IUPAC Name]
Formic acid sodium salt
Formic Acid, Sodium Salt
Formic acid, sodium salt (1:1) [ACD/Index Name]
Formic acid-12C sodium salt
LR0350000
MFCD00013101 [MDL number]
MFCD00198162
Mravencan sodny [Czech]
Natriumformiat [German] [ACD/IUPAC Name]
Sodium formate [ACD/IUPAC Name] [Wiki]
Sodium formate-12C
Sodium methanoate
[141-53-7]
23102-86-5 [RN]
3996-15-4 [RN]
64536-02-3 [RN]
84050-15-7 [RN]
84050-16-8 [RN]
84050-17-9 [RN]
ACS, 99.0%
EINECS 205-488-0
FORMIC ACID SODIUM SALT[3H]
FORMIC ACID, NA SALT
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:62965
Mravencan sodny [Czech]
SODIUM (¹²C)FORMATE|SODIUM (¹²C)FORMATE
sodium DL-methionate
Sodium formate, ACS grade
Sodium formate-d
Sodium Formate-d1
sodium formiate
甲酸钠 [Chinese]


formic acid
C&L Inventory
Formic acid sodium salt
Registration dossier
Sodio Formiato
C&L Inventory
SODIUM FORMATE
C&L Inventory, Registration dossier, Other
Sodium Formate
C&L Inventory, Registration dossier, Other
Sodium formate
Ataman Kimya A.Ş. © 2015 Tüm Hakları Saklıdır.