1-9 A-D E-G H-M N-P Q-S T-Z

Лимонная Кислота (Моногидрат-анхидрат) Citric Acid

Лимонная Кислота (Моногидрат-анхидрат) Citric Acid
Физические характеристики: кристаллическое вещество белого цвета

Химическая формула:  C6H807

Молекулярная масса: 192,12 г/мол

Тип тары, Пластиковый Пакет

В простонародье известна как лимонная соль(виннокаменная кислота). Карбоновые кислоты из группы органических соединений. Вещество распространено в природе: ягодах, стеблях и др..

Территории использования:
-Широко используется в пищевой промышленности.
-В процесс очистки поверхности металла.
-В фармацевтической промышленности.
-В текстильной промышленности как вспомогательные химические вещества.
Лимо́нная кислота́ (систематическое название 2-гидроксипропан-1,2,3-трикарбоновая кислота или 3-гидрокси-3-карбоксипентандиовая) {\displaystyle {\ce {HOOC-CH2-C(OH)COOH-CH2COOH}}}{\displaystyle {\ce {HOOC-CH2-C(OH)COOH-CH2COOH}}} или {\displaystyle {\ce {(HOOCCH2)2C(OH)COOH}}}{\displaystyle {\ce {(HOOCCH2)2C(OH)COOH}}} — трёхосновная карбоновая кислота.
Кристаллическое вещество белого цвета, температура плавления 153 °C. Хорошо растворима в воде, растворима в этиловом спирте, малорастворима в диэтиловом эфире. Является слабой кислотой. Соли и сложные эфиры лимонной кислоты называют цитратами.
Лимонная кислота представляет собой кристаллическое вещество без цвета и запаха, имеющее сильный кислый вкус. Ниже 36,6 °С она кристаллизуется из водного раствора в виде моногидрата, который имеет плотность 1,542 г/см3 и плавится при 100 °С. Его кристаллы имеют орторомбическую сингонию. Безводная лимонная кислота имеет относительную плотность 1,665 г/см3 и плавится при 153 °С.
Моногидрат кристаллизуется в моноклинной сингонии. Перевести моногидрат в безводную форму можно в вакууме в присутствии серной кислоты. В безводном виде гигроскопична и поглощает влагу из воздуха

При нагревании выше 175 °C лимонная кислота переходит в аконитовую кислоту, а при сухой перегонке отщепляется вода и декарбоксилируется, одновременно образуя ацетон, и даёт ангидриды итаконовой и цитраконовой кислот. Окисление перманганатом калия при 35 °С приводит к ацетондикарбоновой кислоте, а при 85 °С — к щавелевой кислоте. При плавлении с гидроксидом калия лимонная кислота образует щавелевую кислоту и уксусную кислоту[5].

Концентрация ионов при электролитической диссоциации водных растворов лимонной кислоты при разных pH. A — остаток молекулы кислоты.
{\displaystyle AH_{3}}{\displaystyle AH_{3}} — недиссоциированная молекула;
{\displaystyle AH_{2}^{-}}{\displaystyle AH_{2}^{-}} — однозарядный ион;
{\displaystyle AH^{2-}}{\displaystyle AH^{2-}} — двухзарядный ион;
{\displaystyle A^{3-}}{\displaystyle A^{3-}} — трёхзарядный ион.
Лимонная кислота является слабой трёхосновной кислотой, образует три ряда солей, в растворе подвергается многоступенчатой электролитической диссоциации. Константы диссоциации (в воде при 18 °C) равны:
В водном растворе лимонная кислота образует хелатные комплексы с ионами кальция, магния, меди, железа и другими. Иногда в комплексообразовании участвует не одна молекула лимонной кислоты[5].
Лимонная кислота образует сложные эфиры со спиртами в присутствии обычных кислотных катализаторов (серная кислота, пара-толуолсульфокислота, ионообменные смолы) либо без катализатора (с высококипящими спиртами). Некоторые эфиры, например, Триметилцитрат, триэтилцитрат и трибутилцитрат используются в качестве пластификаторов. С двухатомными и многоатомными спиртами лимонная кислота образует полиэфиры[6].
Гидроксильная группа лимонной кислоты при обработке хлорангидридами органических кислот и ангидридами кислот может участвовать в образовании сложных эфиров, а также взаимодействует с эпоксидами
С середины 1800-х гг. лимонную кислоту получали исключительно из сока недозревших лимонов, смешивая его с негашёной известью и осаждая таким образом плохорастворимый цитрат кальция. Обработка цитрата кальция серной кислотой приводит к образованию осадка сульфата кальция, а из надосадочной жидкости кристаллизацией выделяли лимонную кислоту. Выход такого процесса составлял 2—3 масс. % от сухой массы фруктов[6]. В литературе упоминается, что лимонную кислоту в виде кальциевой соли развозили из Сицилии и Южной Италии к местам потребления (преимущественно в Англию, Францию и США), а саму кислоту выделяли уже на месте[7].
В 1893 году был обнаружен первый ферментативный метод получения лимонной кислоты: немецкий химик и миколог Карл Вемер использовал для этого плесневые грибы рода пеницилл. Однако внедрить метод в промышленность не удавалось из-за проблем с очисткой продукта. Успех был достигнут лишь в 1919 году, когда ферментативный процесс был организован в Бельгии. Перевес в пользу ферментативного получения произошёл после Первой мировой войны, когда возникли проблемы с поставкой лимонной кислоты из Италии, а мировые потребности всё более нарастали. В 1923 году фирма Пфайзер коммерциализировала открытый ранее Джеймсом Карри и Чарлзом Том процесс превращения углеводов в лимонную кислоту под действием плесневых грибов вида Aspergillus niger в присутствии небольшого количества неорганических солей[7].
По состоянию на начало ХХІ в. весь объём промышленной лимонной кислоты производится биосинтезом. В качестве сырья используют гидролизат кукурузы (в Северной и Южной Америке и Европе), гидролизат маниока, батата и кукурузы (в Азии), кристаллическую сахарозу (в Южной Америке) и мелассу (в Азии и Европе). В некоторых случаях лимонную кислоту получают из сельскохозяйственных отходов[6].
Этот процесс используется с 1930-х гг. Теоретически, из 100 кг сахарозы можно получить 123 кг моногидрата лимонной кислоты либо 112 кг безводной лимонной кислоты. Фактически выход ниже, так как грибки потребляют часть сахарозы для собственного роста и дыхания. Реальный выход составляет от 60 до 85 % от теоретического. Ферментативный процесс можно проводить в трёх типах:

твердофазная ферментация;
поверхностная ферментация;
глубинная ферментация.
При твердофазной ферментации сырьё помещается в желоба́ и смачивается водой. При необходимости в воду добавляют питательные вещества, и затем туда помещают грибковую культуру. После окончания процесса лимонную кислоту вымывают водой, выделяют из раствора и очищают.
Поверхностную ферментацию проводят на специальных лотках, куда помещают субстрат и некоторые неорганические питательные вещества. pH среды регулируют в диапазоне 3—7 pH в зависимости от вида субстрата, затем проводят стерилизацию и устанавливают необходимую температуру. Затем на лотки наносят культуру грибков, которые размножается и покрывает всю поверхность субстрата, после чего начинается образование лимонной кислоты. По окончании процесса из жидкости выделяют лимонную кислоту.
Глубинная ферментация проводится в больших ёмкостях в два этапа. Сначала 10 % субстрата ферментируют в течение 1 дня в качестве затравки, после чего смесь добавляют в основную массу и ферментируют в течение 3—7 дней. Процесс проводится при постоянной продувки жидкости воздухом с помощью компрессора.
После ферментации жидкость фильтруют через мембрану и отделяют лимонную кислоту от белков и остаточных углеводов негашёной известью, экстракцией или хроматографией. По первому, наиболее распространённому способу, лимонная кислота осаждается в виде кальциевой соли, которую затем обрабатывают серной кислотой, получая нерастворимый гипс и раствор очищенной лимонной кислоты. Второй способ основан на использовании специфичного растворителя, в котором лимонная кислота растворяется лучше, чем примеси.
Хроматографическая очистка основана на использовании анионитов: лимонная кислота сорбируется на носителе, а затем вымывается из сорбента разбавленной серной кислотой[9].
После выделения проводят очистку. Для этого загрязнённую лимонную кислоту обрабатывают активированным углём для удаления окрашенных примесей, пропускают через слой ионообменных смол для удаления растворимых солей, фильтруют от нерастворимых примесей и кристаллизуют[8].
В 2012 году мировой объём производства лимонной кислоты составил приблизительно 1,6 млн тонн, из них примерно 0,8—0,9 млн тонн произведено в Китае. Около 70 % от общего производства используется в пищевой промышленности.


Применение
Сама кислота, как и её соли (цитрат натрия, цитрат калия, цитрат кальция, дицитрат трикалия висмута), широко используется как вкусовая добавка, регулятор кислотности и консервант в пищевой промышленности (пищевые добавки E330—Е333), в производстве плавленых сыров, напитков, сухих смесей для приготовления шипучих напитков.
Применяется в медицине, в том числе в составе средств, улучшающих энергетический обмен в цикле Кребса. При приёме внутрь в небольших дозах, например, при употреблении плодов цитрусовых активирует цикл Кребса в организме, что способствует ускорению метаболизма.
В косметике используется как регулятор кислотности косметических средств, в качестве буферных растворов, хелатирующий агент, в смесях для приготовления «шипучих» ванн.
В нефтяной добыче при бурении нефтяных и газовых скважин используется для снижения pH бурового раствора после щелочных ванн.
В строительстве лимонную кислоту применяют в качестве добавки к цементному и гипсовому растворам для замедления схватывания.
Лимонная кислота может использоваться для травления слоя меди на печатных платах в смеси с перекисью водорода.
Широко используется в бытовой химии в качестве очистительного средства нагревательных поверхностей, например, от накипи на дне чайника.

Citric Acid (Anhidrate Monohydrate)
Physical characteristics: white crystalline substance
Chemical formula: C6H807
Molecular weight: 192.12 g / mol
Commonly known as lemon salt (tartaric acid). Carboxylic acids from the group of organic compounds. The substance is widespread in nature: berries, stems, etc.
Citric acid is a weak organic acid that has the molecular formula C6H8O7. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs in the metabolism of all aerobic organisms.
More than two million tons of citric acid are manufactured every year. It is used widely as an acidifier, as a flavoring and a chelating agent.
A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate anion is written as C
6H5O3−7 or C3H5O(COO)3−3.

Areas of use:
-Widely used in the food industry.
-In the process of cleaning the metal surface.
-In the pharmaceutical industry.
-In the textile industry as auxiliary chemicals.

Natural occurrence and industrial production
Lemons, oranges, limes, and other citrus fruits possess high concentrations of citric acid
Citric acid exists in a variety of fruits and vegetables, most notably citrus fruits. Lemons and limes have particularly high concentrations of the acid; it can constitute as much as 8% of the dry weight of these fruits (about 47 g/l in the juices).[a] The concentrations of citric acid in citrus fruits range from 0.005 mol/L for oranges and grapefruits to 0.30 mol/L in lemons and limes; these values vary within species depending upon the cultivar and the circumstances in which the fruit was grown.

Industrial-scale citric acid production first began in 1890 based on the Italian citrus fruit industry, where the juice was treated with hydrated lime (calcium hydroxide) to precipitate calcium citrate, which was isolated and converted back to the acid using diluted sulfuric acid.In 1893, C. Wehmer discovered Penicillium mold could produce citric acid from sugar. However, microbial production of citric acid did not become industrially important until World War I disrupted Italian citrus exports.

In 1917, American food chemist James Currie discovered certain strains of the mold Aspergillus niger could be efficient citric acid producers, and the pharmaceutical company Pfizer began industrial-level production using this technique two years later, followed by Citrique Belge in 1929. In this production technique, which is still the major industrial route to citric acid used today, cultures of A. niger are fed on a sucrose or glucose-containing medium to produce citric acid. The source of sugar
 is corn steep liquor, molasses, hydrolyzed corn starch, or other inexpensive, sugary solution.
 After the mold is filtered out of the resulting solution, citric acid is isolated by precipitating it with calcium hydroxide to yield calcium citrate salt, from which citric acid is regenerated by treatment with sulfuric acid, as in the direct extraction from citrus fruit juice.

In 1977, a patent was granted to Lever Brothers for the chemical synthesis of citric acid starting either from aconitic or isocitrate/alloisocitrate calcium salts under high pressure conditions; this produced citric acid in near quantitative conversion under what appeared to be a reverse, non-enzymatic Krebs cycle reaction.

Global production was in excess of 2,000,000 tons in 2018. More than 50% of this volume was produced in China. More than 50% was used as an acidity regulator in beverages, some 20% in other
 food applications, 20% for detergent applications, and 10% for applications other than food, such as cosmetics, pharmaceuticals, and in the chemical industry

Citric acid was first isolated in 1784 by the chemist Carl Wilhelm Scheele, who crystallized it from lemon juice.[15][11][16] It can exist either in an anhydrous (water-free) form or as a monohydrate. The anhydrous form crystallizes from hot water, while the monohydrate forms when citric acid is crystallized from cold water. The monohydrate can be converted to the anhydrous form at about 78 °C. Citric acid also dissolves in absolute (anhydrous) ethanol (76 parts of citric acid per 100 parts of ethanol) at 15 °C. It decomposes with loss of carbon dioxide above about 175 °C.

Citric acid is normally considered to be a tribasic acid, with pKa values, extrapolated to zero ionic strength, of 2.92, 4.28, and 5.21 at 25 °C.The pKa of the hydroxyl group has been found, by means of 13C NMR spectroscopy, to be 14.4.[18] The speciation diagram shows that solutions of citric acid are buffer solutions between about pH 2 and pH 8. In biological systems around pH 7, the two species present are the citrate ion and mono-hydrogen citrate ion. The SSC 20X hybridization buffer is an example in common use.[19] Tables compiled for biochemical studies[20] are available.

On the other hand, the pH of a 1 mM solution of citric acid will be about 3.2. The pH of fruit juices from citrus fruits like oranges and lemons depends on the citric acid concentration, being lower for higher acid concentration and conversely.

Acid salts of citric acid can be prepared by careful adjustment of the pH before crystallizing the compound. See, for example, sodium citrate.

The citrate ion forms complexes with metallic cations. The stability constants for the formation of these complexes are quite large because of the chelate effect. Consequently, 
it forms complexes even with alkali metal cations. However, when a chelate complex is formed using all three carboxylate groups, the chelate rings have 7 and 8 members, which are
 generally less stable thermodynamically than smaller chelate rings. In consequence, the hydroxyl group can be deprotonated, forming part of a more stable 5-membered ring, as in 
ammonium ferric citrate, (NH4)5Fe(C6H4O7)2·2H2O.

Citric acid can be esterified at one or more of the carboxylic acid functional groups on the molecule (using a variety of alcohols), to form any of a variety of mono-, di-, tri-, and mixed esters.[citation needed]

Biochemistry
Citric acid cycle
Main article: Citric acid cycle
Citrate is an intermediate in the TCA cycle (aka TriCarboxylic Acid cycle, or Krebs cycle, Szent-Györgyi), a central metabolic pathway for animals, plants, and bacteria. Citrate
 synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for aconitase and is converted into aconitic acid. 
The cycle ends with regeneration of oxaloacetate. This series of chemical reactions is the source of two-thirds of the food-derived energy in higher organisms. Hans Adolf Krebs
 received the 1953 Nobel Prize in Physiology or Medicine for the discovery.

Some bacteria (notably E. coli) can produce and consume citrate internally as part of their TCA cycle, but are unable to use it as food because they lack the enzymes required to 
import it into the cell. After tens of thousand of evolutions in a minimal glucose medium that also contained citrate during Richard Lenski's Long-Term Evolution Experiment, a variant
 E. coli evolved with the ability to grow aerobically on citrate. Zachary Blount, a student of Lenski's, and colleagues studied these "Cit+" E. coli[22][23] as a model for how novel 
traits evolve. They found evidence that, in this case, the innovation was caused by a rare duplication mutation due to the accumulation of several prior "potentiating" mutations, 
the identity and effects of which are still under study. The evolution of the Cit+ trait has been considered a notable example of the role of historical contingency in evolution.

Other biological roles
Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive 
modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA 
(the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl 
CoA carboxylase, which is allosterically modulated by citrate.

High concentrations of cytosolic citrate can inhibit phosphofructokinase, the catalyst of a rate-limiting step of glycolysis. This effect is advantageous: high concentrations of 
citrate indicate that there is a large supply of biosynthetic precursor molecules, so there is no need for phosphofructokinase to continue to send molecules of its substrate, 
fructose 6-phosphate, into glycolysis. Citrate acts by augmenting the inhibitory effect of high concentrations of ATP, another sign that there is no need to carry out glycolysis.

Citrate is a vital component of bone, helping to regulate the size of apatite crystals.

Applications
Food and drink
Powdered citric acid being used to prepare lemon pepper seasoning
Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies.
Within the European Union it is denoted by E number E330. Citrate salts of various metals are used to deliver those minerals in a biologically available form in many dietary supplements. 
Citric acid has 247 kcal per 100 g. In the United States the purity requirements for citric acid as a food additive are defined by the Food Chemicals Codex, which is published by the United States Pharmacopoeia (USP).

Citric acid can be added to ice cream as an emulsifying agent to keep fats from separating, to caramel to prevent sucrose crystallization, or in recipes in place of fresh lemon juice.
Citric acid is used with sodium bicarbonate in a wide range of effervescent formulae, both for ingestion (e.g., powders and tablets) and for personal care (e.g., bath salts, bath bombs, and cleaning of grease). Citric acid sold in a dry powdered form is commonly sold in markets and groceries as "sour salt", due to its physical resemblance to table salt. It has use in culinary applications, as an alternative to vinegar or lemon juice, where a pure acid is needed. Citric acid can be used in food coloring to balance the pH level of a normally basic dye.[citation needed]

Cleaning and chelating agent
Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators.
It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. By chelating the metals in hard water, it lets these cleaners
 produce foam and work better without need for water softening. Citric acid is the active ingredient in some bathroom and kitchen cleaning solutions. A solution with a six percent 
concentration of citric acid will remove hard water stains from glass without scrubbing. Citric acid can be used in shampoo to wash out wax and coloring from the hair. Illustrative 
of its chelating abilities, citric acid was the first successful eluant used for total ion-exchange separation of the lanthanides, during the Manhattan Project in the 1940s. In the 
1950s, it was replaced by the far more efficient EDTA.

In industry, it is used to dissolve rust from steel and passivate stainless steels.

Cosmetics, pharmaceuticals, dietary supplements, and foods
Citric acid is used as an acidulant in creams, gels, and liquids. Used in foods and dietary supplements, it may be classified as a processing aid if it was added for a technical or
 functional effect (e.g. acidulent, chelator, viscosifier, etc.). If it is still present in insignificant amounts, and the technical or functional effect is no longer present, it may
 be exempt from labeling <21 CFR §101.100(c)>.

Citric acid is an alpha hydroxy acid and is an active ingredient in chemical skin peels.


Citric acid is used as one of the active ingredients in the production of facial tissues with antiviral properties.

Other uses
The buffering properties of citrates are used to control pH in household cleaners and pharmaceuticals.

Citric acid is used as an odorless alternative to white vinegar for home dyeing with acid dyes.

Sodium citrate is a component of Benedict's reagent, used for identification both qualitatively and quantitatively of reducing sugars.

Citric acid can be used as an alternative to nitric acid in passivation of stainless steel.

Citric acid can be used as a lower-odor stop bath as part of the process for developing photographic film. Photographic developers are alkaline, so a mild acid is used to neutralize and stop their action quickly, 
but commonly used acetic acid leaves a strong vinegar odor in the darkroom.

Citric acid/potassium-sodium citrate can be used as a blood acid regulator.

Soldering flux. Citric acid is an excellent soldering flux,either dry or as a concentrated solution in water. It should be removed after soldering, especially with fine wires, as it is 
mildly corrosive. It dissolves and rinses quickly in hot water.

Synthesize solid materials from small molecules
In materials science, the Citrate-gel method is a process similar to the sol-gel method, which is a method for producing solid materials from small molecules. During the synthetic 
process, metal salts or alkoxides are introduced into a citric acid solution. The formation of citric complexes is believed to balance the difference in individual behavior of ions
 in solution, which results in a better distribution of ions and prevents the separation of components at later process stages. The polycondensation of ethylene glycol and citric acid 
starts above 100 °С, resulting in polymer citrate gel formation.

Safety
Although a weak acid, exposure to pure citric acid can cause adverse effects. Inhalation may cause cough, shortness of breath, or sore throat. Over-ingestion may cause abdominal pain 
and sore throat. Exposure of concentrated solutions to skin and eyes can cause redness and pain. Long-term or repeated consumption may cause erosion of tooth enamel.


Ataman Chemicals © 2015 All Rights Reserved.