1-9 A-D E-G H-M N-P Q-S T-Z

ANIONIC POLYACRYLAMIDE (Anyonik Poliakrilamit)

ANIONIC POLYACRYLAMIDE-Anyonik Poliakrilamit

 

Synonyms:
Anionic polyacrylamide; Anionic polyacrylamides; apam;prop-2-enoic acid; 2-(prop-2-enoylamino)butane-2-sulfonic acid; Therma-thin DP; Calgon AA-Anyonik PoliakrilamitA; Calgon TRC 233; Calgon TRC 2331; Calgon O 15924J SCR 100 (surfactant); Acrylic acid Anyonik Poliakrilamit copolymer; 2-Acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; Acrylic acid-2-acrylamido-2-methylpropanesulfonic acid copolymer; Poly(2-acrylamido-2-methylpropanesulfonic acid-CO-acrylic acid); Poly(acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid); 2-(1-oxoprop-2-enylamino)-2-butanesulfonic acid; 2-propenoic acid; Acrylic acid-2-acrylamido-2-methyl-1-propanesulfonic acid copolymer; 2-Methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid-2-propenoic acid copolymer; 2-Propenoic acid, polymer with 2-methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid; 1-Propanesulfonic acid; 2-methyl-2-((1-oxo-2-propenyl)amino)-, polymer with 2-propenoic acid; 2-Acrylamido-2-methyl-1-propanesulfonic acid; Ammonium Anyonik Poliakrilamit; Lubrizol 2411; 1-propanesulfonic acid, 2-methyl-2-((1-oxo-2-propenyl)amino)-, monoammonium salt; 58374-69-9; LS-181774; AC1OA8A4; SCHEMBL570409; BQMNFPBUAQPINY-UHFFFAOYSA-N; OR054829; ammonium 2-acrylamido-2-methylpropanesulfonate 2-acrylamido-2-; ethylpropanesulfonic acid, ammonium salt; 2-acrylamido-2-methyl-1-propanesulfonic acid-ammonium salt; azanium 2-methyl-2-(prop-2-enoylamino)propane-1-sulfonate; AMMONIUMACRYLOYLDIMETHYLTAURATE/VINYLFORMAMIDECOPOLYMER; 1-PROPANESULFONIC ACID 2-METHYL-2-[(1-OXO-2-PROPEN-1-YL)AMINO]- AMMONIUM SALT (1:1); 244202-43-5; 356057-14-2; 363593-04-8; 441768-74-7; 807639-18-5; 863311-76-6; amepese; Anyonik Poliakrilamit; akrilik asit polimer; akrilikasit2akrilamit; poli2akrilamid2metilpropansülfonikasit; ply2akrylamyde2methylpropansülfonicacit;puropanesülfonikasit; puropansülfonicasit; amepese kopolimer; amsps kopolymer; Acrylamido methyl propane sulfonic acid; arcyl amido methyl propane sulfonic acid; acryl; amido; methyl; propane; sulfonic; acid; acryl amido; propane sulfonic; sulfonic acid; acrylamidomethylpropanesulfonicacid; akril amido; akril amido metil propan; akril; amido; metil; propan; sulfonic; asid; Anyonik Poliakrilamit; Anyonik Poliakrilamit; akril amido metil propane; 2-Acrylamido-2-methyl-1-propanesulfonic acid; 2-Acrylamido-2-methyl-1-propanesulfonic acid sodium salt solution; 15214-89-8; 2-Acrylamide-2-methylpropanesulfonic acid; TBAS; Anyonik Poliakrilamit; TBAS-Q; Anyonik Poliakrilamit MONOMER; Lubrizol Anyonik Poliakrilamit; ACRYLAMIDO BUFFER; 2-Acrylamide-2-methy; LABOTEST-BB LT00012662; ACRYLAMIDO BUFFER PK 1; 2-Acryloylamino-2-Methyl-1-Pro; CB3470952; C7H13NO4S; 07.25; 15214-89-8.mol; 1-Propanesulfonic acid; 2-methyl-2-[(1-oxo-2-propenyl) amino]-(15214-89-8); 2-Acrylamido-2-methyl-1-propanesulfonic acid 99%; 2-Acrylamide-2-methylpropanesulfonic acid Preparation Products And Raw materials; 40623-75-4; 2-Acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; TH-241; aa-Anyonik Poliakrilamita; AcrylicAcid-Anyonik PoliakrilamitCopolymer AA/Anyonik Poliakrilamit); Sulfonated Polyacrylic Acid Copolymer; TH-613 Acrylic-acrylate-sulfosalt copolymers; ACRYLIC ACID/ APSA COPOLYMER/HPA TERPOLYMER (AA/APSA/HPA); ACRYLIC ACID/ACRYLAMIDOMETHYL PROPANE SULFONIC ACID COPOLYMER; prop-2-enoic acid; 2-(prop-2-enoylamino)butane-2-sulfonic acid; Acrylic Acid/Acrylate/Phosphonic Acid/Sulfosalt Tetra-copolymer; 2-acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; CB8855341; (C7H13NO4S)x.(C3H4O2)y; Anyonik Poliakrilamit Monomer (2-Acrylamido-2-Methylpropane sulfonic Acid); 15214-89-8; 15214-89-8; 2-Acrylamide-2-methylpropanesulfonic acid; 2-Acrylamido-2-methylpropanesulfonic acid; 2-Acrylamido-2-methyl-1-propanesulfonic acid; 1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino]-; 2-Acrylamido-2-methylpropanesulfonate; 2-methyl-2-(prop-2-enoylamino)propane-1-sulfonic acid; 
2-acrylamide 2-methylpropanesulfonate; 2-acrylamido-2-methyl-1-propanesulfonic acid; 2-acrylamido-2-methylpropanesulfonate-acrylamido-2-methylpropanesulfonate, monosodium salt; 2-acrylamido-2-methylpropanesulfonate, potassium salt; 2-Anyonik Poliakrilamit; Anyonik Poliakrilamit sulfonate cpd; 15214-89-8; 2-Acrylamide-2-methylpropanesulfonic acid; 2-Acrylamido-2-methylpropanesulfonic acid; 2-Acrylamido-2-methyl-1-propanesulfonic acid; 1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino]-; 2-Acrylamido-2-methylpropanesulfonate; 2-Acrylamido-2-methylpropanesulphonic acid; EINECS 239-268-0; 2-ACRYLAMIDO-2-METHYLPROPANE SULFONIC ACID; Polyacrylamidomethylpropane sulfonic acid; 2-acrylamido-2-methylpropane-1-sulfonic acid; 2-methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid; XHZPRMZZQOIPDS-UHFFFAOYSA-N; Poly(2-acrylamido-2-methyl-1-propanesulfonic acid); SBB056655; 5165-97-9 (mono-hydrochloride salt); AK167027; DSSTox_CID_7770; 1-Propanesulfonic acid, 2-acrylamido-2-methyl-;SSTox_RID_78560; 2-Acrylamide-2-methylpropanesulfonic acid; 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid; Anyonik Poliakrilamit; 2-Acrylamide-2-methylpropanesulfonic acid; 15214-89-8; 2-ACRYLAMIDE-2-METHYLPROPANESULFONIC ACID; 2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID; 2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID; 2-ACRYLAMIDO-2-METHYLPROPANESULPHONIC ACID; 2-ACRYLOYLAMIDO-2-METHYLPROPANESULFONIC ACID; 2-METHYL-2-[(1-OXO-2-PROPENYL)AMINO]-1-PROPANESULFONIC ACID; ACRYLAMIDO BUFFER; Anyonik Poliakrilamit; Anyonik Poliakrilamit MONOMER; LABOTEST-BB LT00012662; 1-Propanesulfonicacid,2-methyl-2-[(1-oxo-2-propenyl)amino]-; 2-Acrylamido-2-methyl-1-propane; 2-acrylamido-2-; methylpropanesulfonate; 2-methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonicaci; TBAS; 2-Acryloylamino-2-methyl-1-propanesulfonic acid; 2-ACRYLOYLAMIDO-2-METHYLPROPANESULFONIC ACID MONOMER; ACRYLAMIDO BUFFER SOLUTION PK 1, 0.2 M I N WATER, STAB.; ACRYLAMIDO BUFFER PK 1; 2-Acrylamide-2-MethyylPropaneSodiumSulfonate; [EINECS(EC#)]; 39-268-0; C7H13NO4S; MFCD00007522; 207.25; 1946464; 15214-89-8; 29241900; Sulfuric acid; Acetic acid glacial; SULFURIC ACID; Acrylonitrile; ISOBUTYLENE; PROPYLENE; Sulfuric acid fuming 20%; 2-Acrylamide-2-methylpropanesulfonic acid(15214-89-8); 2-Acrylamide-2-methylpropanesulfonic acid(15214-89-8)IR1; 2-Acrylamide-2-methylpropanesulfonic acid(15214-89-8)13CNMR-Acrylamide-2-methylpropanesulfonic acid(15214-89-8)MS; 2-Acrylamide-2-methylpropanesulfonic acid(15214-89-8)1HNMR; 2-Acrylamide-2-methylpropanesulfonic acid(15214-89-8)IR2; 2-Acrylamido-2-methylpropanesulfonic acid, 97%(15214-89-8); 2-Acrylamido-2-methylpropanesulfonic acid, 98%(15214-89-8); 2-Acrylamido-2-methylpropanesulfonic Acid,>98.0%(T)(15214-89-8); 1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino]-; 1-Propanesulfonic acid, 2-acrylamido-2-methyl-; 1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propen-1-yl)amino]-; 1-Propanesulfonic acid, 2-methyl-2-[(1-oxo-2-Propenyl)amino]-; 2-Acrylamido-2,2-dimethylethanesulfonic acid; 2-Acrylamido-2-methyl-1-propanesulfonic acid; 2-Acrylamido-2-methylpropane sulfonic acid; 2-Acrylamido-2-methylpropanesulfonic acid; 2-acrylamido-2-methylpropanesulphonic acid; 2-Acrylamido-2-methylpropansulfonsaeure; 2-Acryloamido-2-methyl-1-propanesulfonic acid; 2-Acryloylamino-2-methyl-1-propane-sulfonic acid; 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid; Acide 2-acrylamido-2-; ethylpropanesulfonique; acido 2-acrilamido-2-metilpropanosulfonico; Acrylamide tert-butylsulfonic acid; Anyonik Poliakrilamit; Anyonik Poliakrilamit (sulfonic acid); ATBS; Lubrizol 2404; Lubrizol Anyonik Poliakrilamit; PROPANESULFONIC ACID, 2-ACRYLAMIDO-2-METHYL-; TBAS-Q; 2-Acrylamide-2-methylpropanesulfonic acid; 2-Acrylamido-2-methylpropane-1-sulfonic acid; 2-Acrylamido-2-methylpropanesulfonic Acid; 2-Acrylamido-2-methylpropanesulfonic acid; 40029; A-16601; A0926; A18924; AGN-PC-0JL6NM; AK167027; 2-methyl-2-(prop-2-enoylamino)propane-1-sulfonic acid; 1-Propanesulfonicacid,2-methyl-2-[(1-oxo-2-propenyl)amino]-; 2-Acrylamido-2-methyl-1-propane;2-acrylamido-2-methylpropanesulfonate; 2-methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonicaci; TBAS; ACRYLAMIDO BUFFER; Anyonik Poliakrilamit; Anyonik Poliakrilamit MONOMER; 2-Acrylamido-2-methylpropanesulfonic acid; 15214-89-8; 2-Acryloylamino-2-methyl-1-propanesulfonic acid; 15214-89-8; C7H12NO4S; Molecular Weight: 206.24; CAS 152; 2-Acryloylamino-2-methyl-1-propanesulfonic acid; 2-Acrylamido-2-Methylpropane Sulfonic Acid; 2-Acrylamido-2-methylpropanesulphonic acid; 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid; Anyonik Poliakrilamit; 2-Acrylamide-2-methylpropanesulfonic acid; 2-(acryloylamino)-2-methylpropane-1-sulfonic acid; potassium 2-(acryloylamino)-2-methylpropane-1-sulfonate; sodium 2-(acryloylamino)-2-; ethylpropane-1-sulfonate; 2-(acryloylamino)-2-methylpropane-1-sulfonate; Acrylamido tertiary butyl sulfonic acid; ATBS; Anyonik Poliakrilamit; 15214-89-8; EINECS 239-268-0; INChI=1/C7H13NO4S/c1-4-6(9)8-7(2,3)5-13(10,11)12/h4H,1,5H2,2-3H3,(H,8,9)H,10,11,12)/p-1; 2-Acrylamido-2-methylpropanesulphonic acid (CAS RN 15214-89-8); its sodium salt (CAS RN 5165-97-9); its ammonium salt (CAS RN 58374-69-9); 2-Acryloylamino-2-Methyl-1-Pro; Lubrizol Anyonik Poliakrilamit; Anyonik Poliakrilamit; TBAS-Q; 2-Acrylamide-2-methy; 2-Acrylamido-2-; Methylpropane-1-sulfonic acid; Anyonik Poliakrilamit MONOMER; 2-Acrylamido-2-methylpropane-1-sulphonic acid; ACRYLAMIDO BUFFER PK 1; 2-Acrylamido-2-methylpropanesulfonic Acid; 2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID; TBAS; 2-Acrylamido-2-methyl-1; Propanesulfonic acid; 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt solution; 2-acrylamido-2-methyl-; propanesulfonic acid, homopolymer, sodium salt; 2-acrylamido-2-methylpropanesulfonic acid sodium salt; 2-methyl-2-((1-oxo-2-propenyl)amino)-1-propanesulfonic acid, sodiumsalt; 1-propanesulfonic acid, 2-acrylamido-2-methyl-, sodium salt; 1- propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propen-1-yl)amino]-; sodium salt (1:1); 1-propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino]-; monosodium salt; sodium 2-(acryloylamino)-2-methylpropane-1-sulfonate; sodium 2-acryl amido-2-methyl propane sulfonate homopolymer; sodium 2-acrylamido-2-methylpropanesulfonate, homopolymer; sodium 2-methyl-2-(prop-2-enoylamino)propane-1-sulfonate; sodium 2-methyl-2-[(1-oxoallyl)amino]propanesulphonate; Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer (AA-Anyonik Poliakrilamit); CAS No. 40623-75-4; AA-Anyonik Poliakrilamit; AA-Anyonik PoliakrilamitA; Acrylic Acid-2-Acrylamido-2-; Methylpropane Sulfonic Acid Copolymer; Sulfonated Polyacrylic Acid Copolymer; AA-Anyonik Poliakrilamit; Acrylic Acid- 2-Acrylanmido-2- methylpropanesulfonicacid Copolymer; Copolymer of Maleic and Acrylic Acid (MA/AA); Copolymer of Phosphono and carboxylic Acid (PCA); acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; acrylic acid Anyonik Poliakrilamit copolymer; acrylic acid-2-acryl amido-2-methyl-1-propane sulfonic acid copolymer; acrylic acid-2-acrylamido-2-methyl propane sulfonic acid copolymer calgon AA-Anyonik PoliakrilamitA; calgon O 15924J; calgon TRC 233; calgon TRC 2331; CG4500 polymer; 2-methyl-2-((1-oxo-2-propenyl)amino)-1-propane sulfonic acid-2-propenoic acid copolymer; poly(2-acrylamido-2-methylpropanesulfonic acid-CO-acrylic acid); poly(acrylamidomethylpropanesulfonic acid-co-acrylic acid); poly(acrylic acid-co-2-acryl amido-2-methyl propane sulfonic acid)poly(acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid); prop-2-enoic acid; 2-(prop-2-enoylamino)butane-2-sulfonic acid; 2-propenoic acid, polymer with 2-methyl-1-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid;therma-thin DP; akrilamid; 2akrilamido2metilpropansulfonicasid; 2akrilamido2metilpropansulfonicasit; 2akrilamido2metilpropansulfonicaside; 2akrilamido2metilpropansülfonicasid; 2akrilamido2metilpropansülfonikasit; 2akrilamido2metilpropanesulfonicasit; APAM; Apam; ANIONIC POLYACRYLAMIDE; ANİONIC POLYACRYLAMİDE; ANIONIC POLYACRYLAMIDE; ANİONIC POLYACRYLAMİDE; AN IONIC POLYACRILAMIDE; ANIONIC POLYACRILAMIDE; ANIONIC POLY ACRYLAMIDE; ANİONIC POLY ACRYLAMİDE; AN İONİC POLYACRILAMIDE; ANİONİC POLYACRILAMIDE; ANİONİC POLİACRİLAMİDE; AN İONİC POLİ ACRİLAMİDE; anıonıc polyacrylamıde; anionıc polyacrylamide; an ıonıc polyacrılamıde; anıonıc polyacrılamıde; anıonıc poly acrylamıde; anionıc poly acrylamide; an ionic polyacrılamıde; anionic polyacrılamıde; anionic poliacrilamide; an ionic poli acrilamide; Anıonıc Polyacrylamıde; Anionıc Polyacrylamide; An Ionıc Polyacrılamıde; Anıonıc Polyacrılamıde; Anıonıc Poly Acrylamıde; Anionıc Poly Acrylamide; An İonic Polyacrılamıde; Anionic Polyacrılamıde; Anionic Poliacrilamide; An İonic Poli Acrilamide; ANYONİK POLİAKRİLAMİT; ANİYONİK POLİAKRİLAMİT; ANYONİK POLİ AKRİLAMİT; ANİYONİK POLİ AKRİLAMİT; ANYONİK POLYAKRİLAMİT; ANİYONİK POLYAKRİLAMİT; ANYONİK POLİAKRİLAMİD; ANİYONİK POLİAKRİLAMİD; ANYONİK POLİ AKRİLAMİD; ANİYONİK POLİ AKRİLAMİD; ANYONİK POLYAKRİLAMİD; ANİYONİK POLYAKRİLAMİD; Anyonik Poliakrilamit; Aniyonik Poliakrilamit; Anyonik Poli Akrilamit; Aniyonik Poli Akrilamit; Anyonik Polyakrilamit; Aniyonik Polyakrilamit; Anyonik Poliakrilamid; Aniyonik Poliakrilamid; Anionic polyacrylamide; Anyonik Poli Akrilamid; Aniyonik Poli Akrilamid; Anyonik Polyakrilamid; Aniyonik Polyakrilamid; anyonik poliakrilamit; aniyonik poliakrilamit; anyonik poli akrilamit; aniyonik poli akrilamit; anyonik polyakrilamit; aniyonik polyakrilamit; anyonik poliakrilamid; aniyonik poliakrilamid; anyonik poli akrilamid; aniyonik poli akrilamid; anyonik polyakrilamid; aniyonik polyakrilamid; Anyonik Poliakrilamit;

 

 

Polyacrylamide Anionique

 

Polyacrylamide
Image illustrative de l'article Polyacrylamide
Identification du Polyacrylamide Anionique
No CAS du Polyacrylamide Anionique 9003-05-8
No ECHA du Polyacrylamide Anionique 100.118.050
Propriétés chimiques du Polyacrylamide Anionique
Formule brute (C3H5NO)n
Masse molaire du motif de répétition : 71,0779 g·mol-1
Unités du SI et CNTP, sauf indication contraire.
modifier Consultez la documentation du modèle
Le polyacrylamide est un polymère répondant à la formule [-CH2-CH(-CONH2)-]n, formé à partir d'acrylamide.

 

du Polyacrylamide Anionique peut être réticulé en incorporant dans le mélange de polymérisation un dérivé bifonctionnel de l'acrylamide : le N,N'-méthylène-bis-acrylamide (CH2=CH-CO-NH-)2CH2.

 

 

Structure moléculaire
Polymérisation de l'acrylamide.svg
Le polyacrylamide, contrairement à l'acrylamide qui est neurotoxique, n'est pas toxique mais doit être manipulé avec précaution car il peut contenir des traces de monomère acrylamide.

 

Le polyacrylamide est un gel hautement absorbant. Sous forme de poudre, il se dilue dans l'eau pour former un gel visqueux après agitation vigoureuse.

Des substances ioniques, telles le chlorure de sodium, permettent au polyacrylamide de libérer les substances absorbées.

L'intérêt de ce polymère peut être apprécié dans son caractère de fluide non newtonien, et constitue un bon exemple d'application de l'effet Weissenberg : le fluide, soumis à l'action d'un agitateur magnétique, remonte au centre du récipient au lieu de se plaquer sur les côtés, comme l'aurait fait un fluide newtonien classique, comme l'eau (cf. Polymère superabsorbant).

 

Applications
Biologie moléculaire : électrophorèse sur gel de polyacrylamide en présence de dodécylsulfate de sodium
Agriculture : amendement
Traitement des eaux : floculation

 

Polyacrylamide anionique - Polyacrylamide anionique

Apparence du polyacrylamide anionique - Apparence

Poudre blanche ou jaune clair de polyacrylamide anionique - poudre blanche ou jaune clair

Poids moléculaire du polyacrylamide anionique - Poids moléculaire

12-25 millions - 12-25 millions

Contenu solide en polyacrylamide anionique - Contenu solide% ≥

88

Degré d'ionisation anionique du polyacrylamide - Degré d'ion%

10-45

Temps de dissolution du polyacrylamide anionique - Temps de dissolution

Dakika 60 minutes - minute

Le polyacrylamide anionique offre des polymères hydrosolubles qui sont solubles dans la plupart des solvants organiques, des propriétés d'électrolyte polymère élevées dans des environnements neutres et alcalins. Avec une bonne floculation, il peut réduire la résistance au frottement entre le liquide et largement utilisé dans l'industrie minière et le traitement de l'eau, etc. utilisé

 

Polyacrylamide non ionique
Application de polyacrylamide anionique:

 

(1) Concentrer et assécher les boues en tant qu'agent d'agglomération utilisé dans un processus industriel de séparation solide-liquide, tel que le décantation, pour expliquer principalement. Les applications pour tous les principaux secteurs sont: le traitement des eaux usées urbaines, le papier, la transformation des aliments, la pétrochimie, la transformation métallurgique, la peinture et le sucre et toutes sortes de traitement des eaux usées industrielles.

(2) Dans l'industrie papetière, des agents de résistance à sec, un agent de rétention peuvent également être utilisés comme adjuvant de filtration. Ceux-ci peuvent grandement améliorer la résistance physique du papier et réduire la perte de fibres, mais peuvent également jouer un rôle important en agglutinant, peuvent être utilisés dans le processus de séparation de l'encre, également dans le traitement de l'eau blanche, la qualité du papier peut être améliorée.

(3) En tant qu'exploitation minière, il peut également être utilisé pour les eaux usées de l'industrie du charbon, le dispositif de traitement des eaux usées de lavage du charbon.

(4) Vérification du profil du champ pétrolifère et ajout d'une certaine quantité d'adhésif chimique correspondant au CMC et au traitement de l'eau. Il peut être utilisé dans le contrôle de profil de champ pétrolifère et comme agent de blocage de l'eau. L'additif de boue EOR peut également être utilisé (huile améliorée) pour le développement de la production chimique de forage de gaz de pétrole de procédé. Comme une sorte d'additifs de boue dans les champs pétrolifères. augmenter la viscosité de l'eau et améliorer son efficacité dans la méthode d'alimentation en eau.

 

Précédent: Polyacrylamide non ionique
Un article: Polyacrylamide non ionique

 

-L'acide acrylamido-2-méthylpropane sulfonique (polyacrylamide anionique) est un monomère acrylique d'acide sulfonique réactif, hydrophile, utilisé pour modifier les propriétés chimiques d'une grande variété de polymères anioniques. Dans les années 1970, les premiers brevets utilisant ce monomère ont été ouverts à la production de fibres acryliques. Aujourd'hui, il existe des milliers de brevets et de publications impliquant l'utilisation du polyacrylamide anionique dans de nombreux domaines tels que le traitement de l'eau, les champs pétrolifères, les produits chimiques de construction, les hydrogels pour applications médicales, les produits de soins personnels, les revêtements en émulsion, les adhésifs et les modificateurs de rhéologie.

Stabilité hydrolytique et thermique: Le groupe diméthyle géminal et le groupe sulfométhyle sont combinés pour inhiber stériquement la fonctionnalité amide et conférer une stabilité hydrolytique et thermique aux polymères contenant du polyacrylamide anionique.

Polarité et hydrophilie: Le groupe sulfonate donne le caractère hautement hydrophile et anionique du monomère dans une large gamme de pH. De plus, le polyacrylamide anionique absorbe facilement l'eau et confère également au polymère des propriétés d'absorption et de transport d'eau accrues.

Solubilité: Le polyacrylamide anionique est très soluble dans l'eau et le diméthylformamide (DMF) et présente une solubilité limitée dans la plupart des solvants organiques polaires.

Inhibition du précipité de cation bivalent: L'acide sulfonique dans le polyacrylamide anionique est un groupe ionique très fort et est entièrement ionisé dans des solutions aqueuses. Dans les applications où l'on ne souhaite pas que des sels minéraux soient déposés, l'inclusion d'un polymère contenant une petite quantité de polyacrylamide anionique peut empêcher de manière significative la précipitation de cations divalents. Le résultat est une réduction significative de l'effondrement d'une grande variété de sels minéraux, y compris le calcium, le magnésium, le fer, l'aluminium, le zinc, le baryum et le chrome. La viscosité est la détermination du poids moléculaire moyen.

Applications:

Fibre acrylique: La fibre acrylique, acrylique modifiée, polypropylène et polyfluorure de vinylidène a été fournie avec une consistance de colorant, une absorption d'humidité et une résistance statique.

Revêtement et adhésif: Le groupe acide sulfonique confère au monomère un caractère ionique sur une large gamme de pH.

Les charges anioniques du polyacrylamide anionique fixées aux particules de polymère améliorent la stabilité chimique et au cisaillement de l'émulsion de polymère et réduisent également la quantité de tensioactif s'échappant du film de peinture. Il améliore les propriétés thermiques et mécaniques des adhésifs et augmente la force de liaison des formulations adhésives sensibles à la pression.

Détergents: Augmente les performances de lavage des tensioactifs en liant des cations multivalents et en réduisant la liaison de la saleté.

 

Soins personnels: De fortes propriétés polaires et hydrophiles incorporées dans un homopolymère de polyacrylamide anionique de haut poids moléculaire en font un lubrifiant très efficace dans les soins de la peau.
Lorsqu'elles sont associées à un hydrogel de polyacrylamide anionique, une absorption d'eau et une capacité de gonflement élevées sont les clés de la pratique médicale. L'hydrogel avec du polyacrylamide anionique a montré une conductivité homogène, une faible impédance électrique, une force cohésive, une bonne adhérence cutanée et une biocompatibilité et reproductibilité, utilisé pour les électrodes électrocardiographiques (ECG), l'électrode de défibrillation, les électrodes de mise à la terre électrochirurgicales et les électrodes d'administration de médicaments iontophorétiques.

 

De plus, des polymères dérivés du polyacrylamide anionique sont utilisés comme composant collant d'hydrogel absorbant et de bandages pour plaies. Il est utilisé comme monomère dans les superabsorbants en raison de sa grande capacité d'absorption et de rétention d'eau. pour les couches.

Applications pour champs pétrolifères: Dans les applications pour champs pétrolifères, les polymères doivent se tenir dans des environnements hostiles et nécessitent une stabilité thermique et hydrolytique et une résistance à l'eau dure contenant des ions métalliques. Par exemple, dans les opérations de forage avec des conditions de salinité élevée, de température élevée et de haute pression, les copolymères anioniques de polyacrylamide peuvent empêcher la perte de fluide et peuvent être utilisés dans les environnements de champs pétrolifères, comme inhibiteurs de tartre, réducteurs de friction et polymères de contrôle de l'eau, et pour les applications d'inondation de polymères.

Applications de traitement de l'eau: La stabilité cationique des polymères contenant du polyacrylamide anionique est très utile pour les procédés de traitement de l'eau. Les polymères de faible poids moléculaire inhibent non seulement la masse de calcium, de magnésium et de silice dans les tours de refroidissement et les chaudières, mais aident également à contrôler la corrosion en dispersant l'oxyde de fer. Lorsque des polymères de poids moléculaire élevé sont utilisés, ils peuvent être utilisés pour précipiter des solides dans le traitement de flux de déchets industriels.

Protection des cultures: biodisponibilité des pesticides dans les formulations organiques soufrées, augmentation des formulations polymères dissoutes et nanoparticules.

Membranes: Les membranes d'ultrafiltration et de microfiltration asymétriques augmentent l'écoulement de l'eau, la rétention et la résistance à l'encrassement, et fonctionnent comme un composant anionique dans les membranes de piles à combustible en polymère.

Applications de construction

Les superplastifiants contenant du polyacrylamide anionique sont utilisés pour réduire l'eau dans les formulations de béton. Les avantages de ces additifs sont une résistance accrue, une aptitude au traitement améliorée, une résistance améliorée des mélanges de ciment.

La poudre de polymère redispersible contrôle la teneur en pores de l'air dans les mélanges de ciment lorsque le polyacrylamide anionique est administré et empêche l'accumulation de poussière due à la fabrication et au stockage de la poussière pendant le processus de séchage par atomisation. Les formulations de revêtement avec des polymères de polyacrylamide anioniques empêchent les ions calcium de se former sous forme de chaux sur la surface du béton et améliorent l'aspect et la durabilité du revêtement.

L'acide 2-acrylamido-2-méthylpropane sulfonique (polyacrylamide anionique) est un monomère acrylique d'acide sulfonique réactif, hydrophile, utilisé pour modifier les propriétés chimiques d'une grande variété de polymères anioniques. Dans les années 1970, les premiers brevets utilisant ce monomère ont été ouverts à la production de fibres acryliques. Aujourd'hui, il existe des milliers de brevets et de publications impliquant l'utilisation du polyacrylamide anionique dans de nombreux domaines tels que le traitement de l'eau, les champs pétrolifères, les produits chimiques de construction, les hydrogels pour applications médicales, les produits de soins personnels, les revêtements en émulsion, les adhésifs et les modificateurs de rhéologie.

 

 

ANYONİK POLİAKRİLAMİT

 

Anyonik Poliakrilamit - Polielektrolit (PAM)

Anyonik Poliakrilamit Bu ürün suda çözülebilen bir polimerdir. Anyonik Poliakrilamit Organik çözücülerde çözünmezler. Anyonik Poliakrilamit İyi floküle edicidir.Anyonik Poliakrilamit Sıvı arasındaki sürtünme direncini azaltabilir.
Ana kullanım alanın çamur susuzlaştırmadır ve çamurdaki su içeriğini düşürür. Endüstriyel atık su ve içme suyunun arıtılması için kullanılabilir. Kâğıdın kuru ve ıslak mukavemetini arttırmak ve küçük liflerin ve elyafların oranını arttırmak için kağıt yapımında kullanılabilir.
Bir flokülasyon yardımcısı olarak, esasen endüstriyel katı-sıvı ayırma işlemi, berraklaştırma, yoğunlaştırma ve çamur susuzlaştırma proseslerinde kullanılır. Genel olarak poliakrilamit olarak bilinmesine rağmen, flokülant, polielektrolit, çöktürme kimyasalı ve arıtma kimyasalı olarak da adlandırılmaktadır.

 

 

Anyonik Poliakrilamit Kullanım Yerleri
Endüstriyel atık su arıtımı, içme suyu arıtımı, nişasta ve alkol tesisleri (nişasta kaybını geri kazanmak), kağıt yapım katkıları, tersiyer petrol geri kazanımı için petrol değiştirme maddesi, sondaj sıvısı katkı maddeleri.

 

Türü - Item

Anyonik Poliakrilamit - Anionic Polyacrylamide

Anyonik Poliakrilamit Görünüm - Appearance

Anyonik Poliakrilamit Beyaz veya Açık SarıToz - White or Light Yellow Powder

Anyonik Poliakrilamit Moleküler Ağırlığı - Molecular Weight

12-25 Milyon - 12-25 Million

Anyonik Poliakrilamit Katı İçeriği - Solid Content % ≥

88

Anyonik Poliakrilamit İyonlaşma Derecesi - Degree of Ion%

10-45

Anyonik Poliakrilamit Çözünme Süresi - Dissolving Time

≤ 60 Dakika - Minute

Anyonik Poliakrilamit çoğu organik çözücü içinde çözünür olan, suda çözünür polimerler, Nötr ve alkalin ortamlarda yüksek polimer elektrolit özelliklerini sunar. İyi flokülasyon ile, sıvı arasındaki sürtünme direnci azaltabilir ve yaygın olarak madencilik sanayiinde ve su arıtma vs. kullanılır

 

Noniyonik Poliakrilamit
Anyonik Poliakrilamit Uygulama :

 

(1) esas olarak açıklamak için, yerleşim gibi endüstriyel bir katı-sıvı ayırma işleminde, kullanılan bir topaklaşmaya madde olarak, konsantre hale getirin ve sulu çamur susuzlaştırma işlemleri. Tüm önemli sektörler için başvurular şunlardır: Kentsel Kanalizasyon Arıtma, Kağıt, Gıda İşleme, Petrokimya, Metalurji İşleme, Boya ve Şeker ve endüstriyel atıksu arıtma her türlü.

(2) kağıt endüstrisinde, kuru mukavemet maddeleri, tutma maddesi, bir filtre yardımcısı olarak da kullanılabilir. Bunlar büyük ölçüde kağıdın fiziksel gücünü artırmak ve elyaf kaybını azaltmak, aynı zamanda önemli bir topaklaştırma oynayabilir maddeler mürekkep ayırma işleminde, aynı zamanda beyaz suda tedavisinde kullanılabilir, kağıt kalitesi geliştirilebilir.

(3) madencilik olarak, kömür endüstrisi atık su, kömür yıkama atık su arıtma aygıtı için de kullanılabilir.

(4) yağ alanı profilinin kontrol edilmesi ve CMC ile eşleşen ve kimyasal yapıştırıcı belirli bir miktar ilave madde takıp su işlemi. Yağ alanı profili kontrolünde ve su tıkama maddesi olarak kullanılabilir. Ayrıca EOR çamur katkı kullanılabilir (Geliştirilmiş Petrol) proses yağı gaz sondaj kimyasal üretiminin geliştirilmesi için. Petrol alanlannda çamur katkı maddelerinin bir tür olarak. suyun viskozitesini artırmak ve su besleme yönteminde etkinliğini geliştirmek.

 

Önceki: Noniyonik Poliakrilamit
Sonraki: Noniyonik Poliakrilamit

 

-Akrilamido-2-metilpropan sülfonik asit (Anyonik Poliakrilamit), çok çeşitli anyonik polimerlerin kimyasal özelliklerini değiştirmek için kullanılan bir reaktif, hidrofilik, sülfonik asit akrilik monomeridir. 1970'lerde, bu monomerin kullanıldığı en erken patentler akrilik elyaf üretimine açıldı. Günümüzde, su arıtımı, yağ sahası, inşaat kimyasalları, tıbbi uygulamalar için hidrojeller, kişisel bakım ürünleri, emülsiyon kaplamaları, yapıştırıcılar ve reoloji modifikatörleri gibi pek çok alanda Anyonik Poliakrilamit kullanımını içeren binlerce patent ve yayın bulunmaktadır.

Hidrolitik ve termal kararlılık: geminal dimetil grubu ve sülfometil grubu, amid işlevselliğini sterik olarak engellemek üzere bir araya getirilir ve Anyonik Poliakrilamit'yi içeren polimerlere hem hidrolitik hem de termal kararlılık kazandırır.

Polarite ve hidrofiliklik: Sülfonat grubu, geniş pH aralığında monomerin yüksek derecede hidrofilik ve anyonik karakterini verir. Buna ek olarak, Anyonik Poliakrilamit suyunu kolaylıkla emer ve aynı zamanda polimere artırılmış su emme ve taşıma özellikleri verir.

Çözünürlük: Anyonik Poliakrilamit, suda ve dimetilformamidde (DMF) çok çözünürdür ve çoğu polar organik solventte sınırlı çözünürlük gösterir.

İki değerlikli katyon çökeltisinin engellenmesi: Anyonik Poliakrilamit'deki sülfonik asit çok güçlü bir iyonik gruptur ve sulu solüsyonlarda tamamen iyonize olur. Mineral tuzların çökelmesinin istenmediği uygulamalarda, küçük miktarda Anyonik Poliakrilamit içeren bir polimerin dahil edilmesi, iki değerlikli katyonların çökelmesini önemli ölçüde önleyebilir. Sonuç, kalsiyum, magnezyum, demir, alüminyum, çinko, baryum ve krom dahil olmak üzere çok çeşitli mineral tuzlarının çökmesinde belirgin bir azalma oluşturmaktadır. Viskozite ortalama molekül ağırlığının belirlenmesidir.

Uygulamalar:

Akrilik elyaf: Akrilik, modifiye akrilik, polipropilen ve poliviniliden flüorür elyafa, boya tutarlılığı, nem emiciliği ve statik direnç kazandırılmıştır.

Kaplama ve yapıştırıcı: Sülfonik asit grubu, geniş bir pH aralığında monomere iyonik karakter verir.

Polimer parçacıklarına sabitlenmiş Anyonik Poliakrilamit'den gelen anyonik yükler, polimer emülsiyonunun kimyasal ve kesilme kararlılığını geliştirir ve aynı zamanda boya filminden sızan yüzey aktif cismi miktarını azaltır. Yapıştırıcıların termal ve mekanik özelliklerini geliştirir ve basınca duyarlı yapışkan formülasyonlarının yapışma gücünü arttırır.

Deterjanlar: Çok değerlikli katyonları bağlayarak ve kir bağını azaltarak yüzey aktif cisimlerin yıkama performansını arttırır.

Kişisel bakım: Yüksek molekül ağırlıklı bir Anyonik Poliakrilamit homopolimerine katılan güçlü polar ve hidrofilik özellikler, cilt bakımında çok etkili bir yağlayıcı özellik olarak yararlanmaktadır.

Tıbbi hidrojel: Anyonik Poliakrilamit bir hidrojel ile birlikte verildiğinde yüksek su emme ve şişme kapasitesi, tıbbi uygulamaların anahtarlarıdır. Anyonik Poliakrilamit'li hidrojel, elektrokardiyografi (EKG) elektrotları, defibrilasyon elektrodu, elektrocerrahi topraklama pedleri ve iyontoforetik ilaç dağıtım elektrotları için kullanılan, homojen iletkenlik, düşük elektrik empedansı, kohezif mukavemet, uygun cilt yapışması ve biyouyumlu ve tekrarlanabilir özellikli olduğunu gösterdi.

Buna ek olarak, Anyonik Poliakrilamit'den türetilen polimerler emici hidrojel ve yara bandajlarının yapışkanlaştırıcı bileşen olarak kullanılır. Süper emici maddelerdeki monomer olarak yüksek su emme ve tutma kabiliyeti nedeniyle kullanılır. bebek bezleri için.

Petrol Sahası Uygulamaları: Petrol sahası uygulamalarında polimerler, düşmanca ortamlarda durmalı ve termal ve hidrolitik stabilite ve metal iyonları içeren sert suya direnç gerektirmelidir. Örneğin, yüksek tuzluluk, yüksek sıcaklık ve yüksek basınç koşullarının bulunduğu sondaj işlemlerinde, Anyonik Poliakrilamit kopolimerleri, sıvı kaybını önleyebilir ve yağ sahası ortamlarında, ölçek önleyiciler, sürtünme azaltıcılar ve su kontrol polimerleri olarak ve polimer sel uygulamaları için kullanılabilir .

Su arıtma uygulamaları: Anyonik Poliakrilamit içeren polimerlerin katyon kararlılığı su arıtma prosesleri için çok yararlıdır. Düşük molekül ağırlıklı polimerler, soğutma kulelerinde ve kazanlarda kalsiyum, magnezyum ve silika kütlesini inhibe etmekle kalmaz, aynı zamanda demir oksidi dağıtarak korozyon kontrolüne yardımcı olurlar. Yüksek molekül ağırlıklı polimerler kullanıldığında, endüstriyel atık akımın işlenmesinde katıları çökeltmek için kullanılabilirler.

Mahsul koruması: Sülfür organik formülasyonlarda pestisitlerin biyolojik olarak temin edilebilirliği, çözünmüş ve nanopartiküllü polimer formülasyonlarında artışlar.

Membranlar: Asimetrik ultrafiltrasyon ve mikrofiltrasyon membranlarında su akışı, tutma ve kirlenme direncini arttırır ve polimer yakıt hücresi membranlarında anyonik bir bileşen olarak çalışılmaktadır.

İnşaat uygulamaları

Anyonik Poliakrilamit içeren süperakışkanlaştırıcılar, beton formülasyonlarında suyu azaltmak için kullanılır. Bu katıkların faydaları arttırılmış mukavemet, geliştirilmiş işlenebilirlik, çimento karışımlarının geliştirilmiş dayanımıdır.

Yeniden dağılabilir polimer tozu, Anyonik Poliakrilamit verildiğinde çimento karışımlarında hava gözenek içeriğini kontrol eder ve püskürtme-kurutma işlemi sırasında toz imalatı ve depolamasından toz yığılmasını önler. Anyonik Poliakrilamit içeren polimerler ile kaplama formülasyonları, kalsiyum iyonlarının beton yüzey üzerinde kireç olarak oluşmasını önler ve kaplamanın görünümünü ve dayanıklılığını geliştirir.

2-Akrilamido-2-metilpropan sülfonik asit (Anyonik Poliakrilamit), çok çeşitli anyonik polimerlerin kimyasal özelliklerini değiştirmek için kullanılan bir reaktif, hidrofilik, sülfonik asit akrilik monomeridir. 1970'lerde, bu monomerin kullanıldığı en erken patentler akrilik elyaf üretimine açıldı. Günümüzde, su arıtımı, yağ sahası, inşaat kimyasalları, tıbbi uygulamalar için hidrojeller, kişisel bakım ürünleri, emülsiyon kaplamaları, yapıştırıcılar ve reoloji modifikatörleri gibi pek çok alanda Anyonik Poliakrilamit kullanımını içeren binlerce patent ve yayın bulunmaktadır.

 


Anionic Polyacrylamide

 

 

Anionic Polyacrylamide
Anionic Polyacrylamide is mainly used for flocculation and sedimentation of various industrial wastewater, sedimentation and clarification treatment

 

 

Description of Anionic Polyacrylamide
Description:

 

Anionic polyacrylamide (APAM) is a water-soluble macromolecule polymer, which is copolymerized by acrylamide and acrylic acid. Because its molecular chain contains a certain number of polar groups, it can bridge particles in water by adsorbing suspended solid particles, or coagulate particles to form large flocculants by neutralizing charges, so it can accelerate the settling of particles in suspension. It is often obvious to accelerate the clarification of solution and promote the effect of filtration.

 

Specification:

Product

Physical Form

 

Solid content 
(%)

 

Anionic Charge

Molecular Weight

Anionic

Off-White Granular Solid

≥88.5

Low

Low

Medium

High

Medium

Low

Medium

High

High

Medium

High

Very High

 

Application:

Polyacrylamide products are widely used in various fields all over the world, up to hundreds of series. According to the unique characteristics of production process and advanced equipment, it is mainly used for flocculation and sedimentation of various industrial wastewater, sedimentation and clarification treatment, such as steel plant wastewater, electroplating plant wastewater, metallurgical wastewater, coal washing wastewater, sludge dewatering, etc. It can also be used to clarify and purify drinking water. Municipal sewage, chemical sewage, sand washing and mineral processing, coal washing, paper making, perfume making, printing and dyeing, oil field piling and other fields have unique product advantages. It has fast flocculation and sedimentation speed, low water content of mud, and greatly saves the cost and efficiency of sewage treatment.

 

Characteristics:

1. Clarification and purification;

2. Sedimentation;

3. Filtration effect;

4. Thickening and other functions.

Synthesis of anionic copolymers of acrylamide. Note: Similar products can be made by hydrolysis of polyacrylamide.

Package:

The product package is 25KG/bag, can be customized according to customer's needs. Dry powder products can absorb moisture and agglomerate when exposed for a long time. It should be stored in a cool, ventilated and dry place, effective storage period is 2 years.

 


ANIONIC POLYACRYLAMIDE

 

Composition: Negatively charged copolymers of acrylamide are widely used as retention aids and dry-strength resins. However, different molecular mass ranges are used for these two roles. Anionic acrylamide copolymer retention aids typically have molecular masses in the range of 5 to 20 million grams per mole. The strength agents typically have molecular masses in the hundreds of thousands. Another difference is in the form delivered to the mill. Though anionic retention aids can be delivered as solid beads or in solution, it is more popular to get them as water-in-oil emulsions. Before such emulsion products can be used they have to be "inverted" with a dilution of about 100-to-1 with a lot of agitation. Further time (at least half an hour) is needed for the individual molecules to uncoil themselves and achieve their full potential as retention aids. The monomers used in their preparation are acrylamide and acrylic acid. The acrylic acid is usually present in its corresponding sodium salt form in the final formulation of retention aid or strength aid. The strength agents are usually shipped as solutions having solids levels in the range of 10 to 50%. A wide range of charge density is available in each case.

Function: Retention aids (molecular mass 5-20 million grams per mole); dry-strength agents (mass in the 100,000's g/mole). Some dispersants (lower mass, usually) have similar compositions.

Strategies for Use: First let's consider the anionic acrylamide retention aids. These are often used for alkaline papermaking, though they also can be used under acidic conditions. The most basic rule is that the furnish must have a suitable "cationic source" to serve as anchoring points for the anionic retention aid. Such materials as polydimethlammonium-epichlorohydrin (polyamine), polydiallyldimethylammonium chloride (poly-DADMAC), and cationic wet-strength resins are especially effective in this role as "promoters" of the retention aid. Alum also can be used as a promoter, especially if the pH is below 6 or if the alum is added at a point where it is in contact with the furnish for a few minutes or less before the retention aid addition. The most popular addition point for a retention aid is right after the pressure screen(s), since this gives the highest retention efficiency. The papermaker has an incentive to use as little retention aid as practical - only enough to keep the paper machine from getting too dirty, to avoid basis weight fluctuations, and to avoid runnability problems. Higher levels are likely to floc the fibers enough to hurt the uniform appearance of the paper, i.e. its "formation." Another alternative is to add the retention aid before the screen(s), possibly achieving a better balance between formation uniformity and retention.

Dry-strength resin performance tends to be highly dependent on the colloidal charge state of the system. Whereas anionic retention aids merely need cationic "anchoring points," the strength resins appear to need a stoichiometric match. Under acidic papermaking conditions alum can be used to achieve optimum resin retention, drainage, and dry-strength contribution. Under alkaline papermaking conditions the same can be achieved by a highly charged polymer, usually containing quaternary amines.

Cautions: Anionic retention aid polymers are probably the slipperiest materials to be found in a paper mill. Spills of retention aid emulsions should be collected with dry absorbent. Spraying with water will merely spread the problem around.

 

INTRODUCTION
Anionic polyacrylamide (APAM) is a kind of polyacrylamide (PAM) and shows electronegative which contains functional groups of sulfonic acid, phosphoric acid or carboxylic
acid1
. Due to more charge, the molecular chain of polymer
can be more stretching in the water which will increase the
capacity of adsorption and bridge for suspended particles
removal2,3
. The mainly interaction between Anionic Polyacrylamide and
suspended particles is static electricity, hydrogen bonding or
covalent bond4-6
. Anionic polyacrylamide with high molecular
weight and good solubility property can be an important kind
of flocculants. And it has been widely used in water treatment
because of good flocculation performance7
. Generally, molecular weight of polysaccharide polymer is determined by
intrinsic viscosity8
. Accordingly, how to improve the intrinsic
viscosity and solubility property of Anionic Polyacrylamide is the most critical
point in the polymerization.
Based on comprehensive literature survey to the preparation technology and application progress of Anionic Polyacrylamide, it can
be found that a detailed analysis and review of past academic
research progress could be valuable with the rapid development of synthesis technology. Homopolymerization posthydrolysis process, homopolymerization cohydrolysis process,
copolymerization approach, inverse emulsion polymerization,
precipitation polymerization and radiation polymerization are
the main six kinds of synthesis technologies of Anionic Polyacrylamide.
REVIEW
Synthesis and Application of Anionic Polyacrylamide in Water Treatment

 

 

This review summarizes the synthesis methods for anionic polyacrylamide. The paper lists six different kinds of anionic polyacrylamide
synthesis technologies, including homopolymerization posthydrolysis process, homopolymerization cohydrolysis process, copolymerization
approach, inverse emulsion polymerization, precipitation polymerization and radiation polymerization. What's more, the authors discussed
the application status of anionic polyacrylamide in water treatment. Based on these reviews, future research perspectives relating to its
synthesis and application were proposed.
Key Words: Anionic polyacrylamide, Synthesis methods, Water treatment, Flocculants.
Fundamental aspects of these methods will be introduced and
summarized. The developments in applications will also be
reviewed and discussed. Finally, the main conclusions and
future perspectives are presented.
Synthesis technology progress of Anionic Polyacrylamide: The earliest
in 1893, Moureu prepared polyacrylamide by using acryloyl
chloride and ammonia in the low temperature. And in 1954,
America takes the lead in realizing the industrialization
production of polyacrylamide. However, in the 1960s,Anionic Polyacrylamide
was firstly developed through alkaline hydrolysis process in
the world. Up to now, synthesis technology of Anionic Polyacrylamide has
experienced a lot of improvements, the basic reaction of polymerization usually expressed as Fig. 1. According to the Anionic Polyacrylamide
synthesis development history of these years, successively
appeared the following six different synthesis technologies:
Homopolymerization posthydrolysis process, homopolymerization cohydrolysis process, copolymerization approach,
inverse emulsion polymerization, precipitation polymerization
and radiation polymerization.
n(CH)2 CH CONH2
Initiator CH2 CH
CONH2

 

 

This technology was widely used in the industrial
production. The greatest advantage offered by this process is
that the first step of polymerization reaction is conducted in
low temperature, which is useful for improving molecular
weight of the Anionic Polyacrylamide9
. However, Anionic polyacrylamide also has some disadvantages
as follows10. Firstly, because of one more step than the other
technologies, the polymerization conditions are not easy to
control. Secondly, hydrolysis process maybe heterogeneous.
Anionic polyacrylamide is difficult to reach the control requirements of dissolving
properties. What's more, ammonia can be released in the
reaction, which will cause not only equipment corrosion, but
also environmental pollution, even threaten workers health.
Homopolymerization cohydrolysis process: Based on
homopolymerization posthydrolysis process, homopolymerization cohydrolysis process was put forward by simplifying
and improving. It can be seen from the Fig. 3 that, sodium is
added into the reaction system before polymerization which
is the biggest difference with the homopolymerization
posthydrolysis process. In this way, the polymerization
reaction and hydrolysis will happen at the same time. Hydroxy
anion can be produced with the hydrolysis reaction. Finally,
we can obtain Anionic Polyacrylamide through drying and granulation.
Fig. 3. Technological process of homopolymerization cohydrolysis
Obviously, this method can overcome the common
problem of hydrolysis heterogeneous owing to posthydrolysis
process11. Meanwhile, production device has been simplified
to one step. This will greatly reduce the production equipment
investment, which can make contribution to lower production
cost12
.
However, impurities maybe bring in the reaction system
resulted from adding sodium before polymerization13
. These
impurities can exist in polymer through polymerization which
may affect the properties of the polymer. In addition, temperature of the reaction system will rise at the beginning of adding
alkali. On the contrary, the polymerization reaction needs to
conduct at low temperature. In this way, it's necessary to cooling
down the temperature after adding alkali. Similarly, this technology also cannot solve the problem of equipment corrosion
and environmental pollution because of ammonia emissions.
Copolymerization approach: Fig. 4 shows the technological process of copolymerization approach. The core idea
of the copolymerization approach is that acrylamide (AM) is
polymerized together with other one or two anionic monomers
under the initiation. And many small molecule organic matters
can be used as anionic monomer, such as sodium acrylate
(SAA), 2-acylamido-2-methyl propane sulfonic acid (Anyonik Poliakrilamit),
etc.
14,15. Generally, the polymer of copolymerization can be
divided into binary copolymer and terpolymer according to
the quantity of different monomer16
.
Fig. 4. Technological process of copolymerization
Short production cycle, less process and no ammonia
emissions are the advantages of copolymerization approach
17,18
.
More important is that degree of hydrolysis can be controlled
through copolymerization19. Furthermore, excellent quality of
Anionic Polyacrylamide can be synthesized with better solubility and higher
molecular weight than homopolymerization posthydrolysis
and homopolymerization cohydrolysis20,21. Based on the above
advantages, this technology is widely used in European and
American countries.
Nevertheless, there is still a problem that reactivity ratio
between acrylamide and other monomers have a big difference (For example: rAM = 1.0, rSAA = 0.35), which can lead to
reaction mechanism complicated22,23. In this way, it is difficult
to optimize synthesis conditions. Moreover, acrylamide with
high purity is quite necessary for this approach. Compared to
European and American countries, the technology of
acrylamide production in China is greatly backward, which is
a large obstacle for the application of copolymerization
approach in China.
Inverse emulsion polymerization: Under the condition
of that monomer water solution as the dispersed phase and
water-immiscible organic solvent as continuous phase, inverse
emulsion polymerization will be conducted in water-in-oil
emulsion24,25. Inverse emulsion polymerization is usually used
to prepare hydrophilic polymeric particles, such as acrylamide26
,
salt of acrylic acid and N-isopropyl acryl amide27,28
. The
inherent advantage of inverse emulsion polymerization in
comparison with the bulk or other polymerization techniques
is the fact that this process enables both to reach high molecular weights and high reaction rates during polymerization29
.
What's more, chance of implosion can be greatly reduced
owing to the reaction occurs in the oil phase30,31. Consequently,
reaction will be smoothly conducted and the generated heat
can be evenly sent out from reaction system. In other words,
the reaction is easy to control which can make molecular
weight located in a relatively narrow range.

 

 


Polyacrylamide

 

 

Polyacrylamide
Polyacrylamide.svg
Names
IUPAC name
poly(2-propenamide)
Identifiers
CAS Number
9003-05-8 ☑
ChemSpider 
none
ECHA InfoCard 100.118.050
UNII 
5D6TC4BRWV (1500 MW) ☒
CompTox Dashboard (EPA)
DTXSID7042308 Edit this at Wikidata
Properties
Chemical formula
(C3H5NO)n
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒ verify (what is ☑☒ ?)
Infobox references
Polyacrylamide (IUPAC poly(2-propenamide) or poly(1-carbamoylethylene), abbreviated as PAM) is a polymer (-CH2CHCONH2-) formed from acrylamide subunits. It can be synthesized as a simple linear-chain structure or cross-linked, typically using N,N'-methylenebisacrylamide. In the cross-linked form, the possibility of the monomer being present is reduced even further. It is highly water-absorbent, forming a soft gel when hydrated, used in such applications as polyacrylamide gel electrophoresis, and can also be called ghost crystals when cross-linked, and in manufacturing soft contact lenses. In the straight-chain form, it is also used as a thickener and suspending agent. More recently, it has been used as a subdermal filler for aesthetic facial surgery (see Aquamid).

 

 


Physicochemical properties
Linear polyacrylamide is a water-soluble polymer. It is typically non-ionic polymer but due to hydrolysis of some amide groups they could convert into carboxylic groups giving polyacrylamide some weak anionic properties.
Uses of polyacrylamide
One of the largest uses for polyacrylamide is to flocculate solids in a liquid. This process applies to water treatment, and processes like paper making and screen printing. Polyacrylamide can be supplied in a powder or liquid form, with the liquid form being subcategorized as solution and emulsion polymer. Even though these products are often called 'polyacrylamide', many are actually copolymers of acrylamide and one or more other chemical species, such as an acrylic acid or a salt thereof. The main consequence of this is to give the 'modified' polymer a particular ionic character.

 

Another common use of polyacrylamide and its derivatives is in subsurface applications such as Enhanced Oil Recovery. High viscosity aqueous solutions can be generated with low concentrations of polyacrylamide polymers, and these can be injected to improve the economics of conventional waterflooding.

The linear soil conditioning form was developed in the 1950s by Monsanto Company and was marketed under the trade name Krilium. The soil conditioning technology was presented at a symposium on "Improvement of Soil Structure" held in Philadelphia, Pennsylvania on December 29, 1951. The technology was strongly documented and was published in the June 1952 issue of the journal Soil Science, volume 73, June 1952 that was dedicated to polymeric soil conditioners.

The original formulation of Krilium was difficult to use because it contained calcium which cross-linked the linear polymer under field conditions. Even with a strong marketing campaign, Krilium was abandoned by Monsanto.

After 34 years, the journal Soil Science wanted to update the soil conditioning technology and published another dedicated issue on polymeric soil conditioner and especially linear, water-soluble, anionic polyacrylamide in the May 1986 issue, volume 141, issue number 5.

The Foreword, written by Arthur Wallace from UCLA and Sheldon D. Nelson from BYU stated in part:

The new water-soluble soil conditioners may, if used according to established procedures

 

increase pore space in soils containing clay
increase water infiltration into soils containing clay
prevent soil crusting
stop erosion and water runoff
make friable soil that is easy to cultivate
make soil dry quicker after rain or irrigation, so that the soil can be worked sooner
Consequently, these translate into

 

 

stronger, larger plants with more extensive root system
earlier seed emergence and crop maturity
more efficient water utilization
easier weed removal
more response to fertilizers and to new crop varieties
less plant diseases related to poor soil aeration
decreased energy requirement for tillage
The cross-linked form which retains water is often used for horticultural and agricultural under trade names such as Broadleaf P4, Swell-Gel, and so on.

 

The anionic form of linear, water-soluble polyacrylamide is frequently used as a soil conditioner on farm land and construction sites for erosion control, in order to protect the water quality of nearby rivers and streams.[1]

The polymer is also used to make Gro-Beast toys, which expand when placed in water, such as the Test Tube Aliens. Similarly, the absorbent properties of one of its copolymers can be utilized as an additive in body-powder.

The ionic form of polyacrylamide has found an important role in the potable water treatment industry. Trivalent metal salts, like ferric chloride and aluminum chloride, are bridged by the long polymer chains of polyacrylamide. This results in significant enhancement of the flocculation rate. This allows water treatment plants to greatly improve the removal of total organic content (TOC) from raw water.

Polyacrylamide is also often used in molecular biology applications as a medium for electrophoresis of proteins and nucleic acids in a technique known as PAGE.

It was also used in the synthesis of the first Boger fluid.

 

Molecular biology laboratories
Polyacrylamide was first used in a laboratory setting in the early 1950s. In 1959, the groups of Davis and Ornstein[2] and of Raymond and Weintraub[3] independently published on the use of polyacrylamide gel electrophoresis to separate charged molecules.[3] The technique is widely accepted today, and remains a common protocol in molecular biology labs.

 

Acrylamide has many other uses in molecular biology laboratories, including the use of linear polyacrylamide (LPA) as a carrier, which aids in the precipitation of small amounts of DNA. Many laboratory supply companies sell LPA for this use.[4]

 

Other uses
The majority of acrylamide is used to manufacture various polymers.[5][6] In the 1970s and 1980s, the proportionately largest use of these polymers was in water treatment.[7] Additional uses include as binding, thickening or flocculating agents in grout, cement, sewage/wastewater treatment, pesticide formulations, cosmetics, sugar manufacturing, soil erosion prevention, ore processing, food packaging, plastic products, and paper production.[5][8] Polyacrylamide is also used in some potting soil.[5] Another use of polyacrylamide is as a chemical intermediate in the production of N-methylol acrylamide and N-butoxyacrylamide.[8] In oil and gas industry Polyacrylamide derivatives especially co-polymers of that have a substantial effect on unconventional production and hydraulic fracturing. As an nonionic monomer it can be co-polymerize with anionic for example Acrylic acid and cationic monomer such as diallyldimethyl ammonium chloride (DADMAC) and resulted co-polymer that can have different compatibility in different applications.

 

 

Soil conditioner
The primary functions of polyacrylamide soil conditioners are to increase soil tilth, aeration, and porosity and reduce compaction, dustiness and water run-off. Secondary functions are to increase plant vigor, color, appearance, rooting depth and emergence of seeds while decreasing water requirements, diseases, erosion and maintenance expenses. FC 2712 is used for this purpose.

 

 

Stability
In dilute aqueous solution, such as is commonly used for Enhanced Oil Recovery applications, polyacrylamide polymers are susceptible to chemical, thermal, and mechanical degradation. Chemical degradation occurs when the labile amide moiety hydrolyzes at elevated temperature or pH, resulting in the evolution of ammonia and a remaining carboxyl group. Thus, the degree of anionicity of the molecule increases. Thermal degradation of the vinyl backbone can occur through several possible radical mechanisms, including the autooxidation of small amounts of iron and reactions between oxygen and residual impurities from polymerization at elevated temperature. Mechanical degradation can also be an issue at the high shear rates experienced in the near-wellbore region.

 

 

Environmental effects
Concerns have been raised that polyacrylamide used in agriculture may contaminate food with acrylamide, a known neurotoxin and carcinogen.[9] While polyacrylamide itself is relatively non-toxic, it is known that commercially available polyacrylamide contains minute residual amounts of acrylamide remaining from its production, usually less than 0.05% w/w.[10]

 

Additionally, there are concerns that polyacrylamide may de-polymerise to form acrylamide. In a study conducted in 2003 at the Central Science Laboratory in Sand Hutton, England, polyacrylamide was treated similarly as food during cooking. It was shown that these conditions do not cause polyacrylamide to de-polymerise significantly.[11]

In a study conducted in 1997 at Kansas State University, the effect of environmental conditions on polyacrylamide were tested, and it was shown that degradation of polyacrylamide under certain conditions can cause the release of acrylamide.[12] The experimental design of this study as well as its results and their interpretation have been questioned,[13][14] and a 1999 study by the Nalco Chemical Company did not replicate the results.[15]

 

See also
Aquamid
Chitosan
Rhoca-Gil
Sodium polyacrylate, a similar material

 

1. Product characteristics

Anionic polyacrylamide (APAM) series products are water-soluble linear polymers synthesized under high degree polymerization, easily soluble in water, almost insoluble in the benzene, the ether, the aliphatics, the acetone and other common organic solvents. At the meantime, APAM series products also have valuable properties like the flocculation, the thickening, the shear property, the drag-reduction and the dispersibility etc., thus widely used in the oil recovery, the mineral processing, the coal washing, the metallurgy, the chemicals, the paper, the textile, the sugar, the medicine, the environmental protection, the building materials, the agriculture and other industries.

 

2. Application of Anionic Polyacrylamide APAM

1) Displacement agent for tertiary recovery of oilfield

It can adjust the rheology of water injection, increase the viscosity of the displacing liquid, improve the spreading efficiency of the liquid displacement, bring down the water permeability in strata and keep the water and the oil to flow at a constant speed. It is mainly used in the tertiary recovery of the oilfields. Injection of each ton of PAM products can help to gather 100-150 tons extra crude oil.

2) Drilling mud material

Used as drilling mud additives in the oilfield exploration and development and geology, the water conservancy and the coal exploration. It can prolong the bit's life, raise the drilling rate and the drilling footage, and reduce the time of drills exchange. It has obvious effect in avoiding well collapse. It can also be used as the oilfield fracturing fluid and the profiling water blocking agent.

3) Industrial wastewater treatment

Especially for the treatment of wastewater containing suspending particles, which is coarse, highly concentrating, with positive charges, and under neutral water PH value or alkaline. Most effective for wastewater treatment of iron and steel plant, electroplate factory, metallurgy and coal washing etc.

4) Drinking water treatment

Many water from the water plants in China comes from the river water, which contains large sum of sediment and mineral, very turbid, even after precipitation and filtration it still can not meet the requirements, therefore the flocculant is needed. The water plants used to use the inorganic flocculants, but large amount of the additives is required which caused the increase of sludge volume and is not effective. By using the anionic PAM flocculants, with 1/50 additive amount that of inorganic flocculants, it will achieve several times and even dozens of times of the effectiveness than that of the inorganic flocculants. For those organic polluted river water, better effectiveness can be achieved while usiing together with the cationic PAM.

5) Papermaking additives

It can be used for the caustic soda's clarification, used as the retention aid, the filter aid, and the reinforcing agent for the wet and dry paper.

6) Clarifying agent in sugar refining industry

7) Additives and adhesives in aquatic product feedstuff.

3. Instruction for use

1) It's very important to make the efficient dispersion during using, otherwise may cause agglomerate and "fish eyes", and the dissolving time will be longer.

2) Low-hardness water only; avoid adopting such tank or pool, which will influence the water quality.

3) Improve the water temperature to accelerate the dissolving velocity, but not exceed 50°C.

4) Stirring will accelerate dissolving, but tough stirring will make the dispersant chain broken and degradation. Shipshape agitator with 200 - 500 rpm is the best choice.

5) Commonly make the product into 0.05%--0.5% (w/w) solution as reserve.

6) Adjust the optimum dosage of product according to the application condition.

2-Acrylamido-2-methylpropane sulfonic acid (Anionic polyacrylamide) is a reactive, hydrophilic, sulfonic acid acrylic monomer used to alter the chemical properties of wide variety of anionic polymers. In the 1970s, the earliest patents using this monomer were filed for acrylic fiber manufacturing. Today, there are over several thousands patents and publications involving use of Anionic polyacrylamide in many areas including water treatment, oil field, construction chemicals, hydrogels for medical applications, personal care products, emulsion coatings, adhesives, and rheology modifiers. 2-Acrymido-2-Methyl Propane Sulfuric Acid (Anionic polyacrylamide) is a monomer that has unique structure containing the sulfonic acid group. This product appears as a white powder, and can be used in adhesives, paper coatings, and architectural and industrial coatings.

Anionic polyacrylamide is an important monomer. Its copolymers or homopolymers with different molecular weight can be widely used in textile, oil drilling, water treatment, papermaking, dying, coating, cosmetics, electronics, etc. because of its unique formular structure-containing sulfonic acid group and unsaturated radical, thus showing excellent properties in many aspects.

2-Acrylamido-2-methylpropane sulfonic acid (Anionic polyacrylamide) is a reactive, hydrophilic, sulfonic acid acrylic monomer used to alter the chemical properties of wide variety of anionic polymers. In the 1970s, the earliest patents using this monomer were filed for acrylic fiber manufacturing. Today, there are over several thousands patents and publications involving use of Anionic polyacrylamide in many areas including water treatment, oil field, construction chemicals, hydrogels for medical applications, personal care products, emulsion coatings, adhesives, and rheology modifiers.

Anionic polyacrylamide is white powder. Anionic polyacrylamide is an important monomer. Its copolymers or homopolymers with different molecular weight can be widely used in textile, oil drilling, water treatment, papermaking, dying, coating, cosmetics, electronics, etc. because of its unique formular structure-containing sulfonic acid group and unsaturated radical, thus showing excellent properties in many aspects.

Anionic polyacrylamide is an important monomer, has good complexion, adsorption, biological activity, surface activity, hydrolysis stability and thermal stability. Its copolymers or homopolymers with different molecular weight can be widely used in textile, oil drilling, water treatment, papermaking, dying, coating, cosmetics, electronics, etc. because of its unique formular structure-containing sulfonic acid group and unsaturated radical, thus showing excellent properties in many aspects.

 

Hydrolytic and thermal stability: The geminal dimethyl group and the sulfomethyl group combine to sterically hinder the amide functionality and provide both hydrolytic and thermal stabilities to Anionic polyacrylamide-containing polymers.
Polarity and hydrophilicity: The sulfonate group gives the monomer a high degree of hydrophilicity and anionic character at wide range of pH. In addition, Anionic polyacrylamide is absorbing water readily and also imparts enhanced water absorption and transport characteristics to polymers.
Solubility: Anionic polyacrylamide is very soluble in water and dimethylformamide (DMF) and also shows limited solubility in most polar organic solvents.
Inhibition of divalent cation precipitation: Sulfonic acid in Anionic polyacrylamide is a very strong ionic group and ionizes completely in aqueous solutions. In applications where the precipitation of mineral salts is undesirable, the incorporation of a polymer containing even a small quantity of Anionic polyacrylamide can significantly inhibit the precipitation of divalent cations. The result is a significant reduction in the precipitation of a wide variety of mineral salts, including calcium, magnesium, iron, aluminum, zinc, barium and chromium.
Determining viscosity-average molecular weight.

 

2-Acrylamido-2-Methylpropane Sulfonic Acid (Anionic polyacrylamide) is a kind of vinyl monomer that contains sulfonic acid gene. Its structure contains strong anionic, water-soluble sulfur-based groups, shielded amide groups and unsaturated double bond, so that it has an excellent overall performance, good complex nature of complexation, adsorption, biological activity, surface activity, hydrolytic stability and thermal stability. In aqueous solution, Anionic polyacrylamide monomer has a very slow rate of hydrolysis, and its sodium aqueous solution has an excellent anti-hydrolysis performance when the pH is greater than 9. In acidic conditions, the anti-hydrolysis performance of Anionic polyacrylamide homopolymer is much higher than that of polyacrylamide. Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer is the copolymer of acrylic acid and 2-acrylanmido-2-methylpropanesulfonic acid. Due to including carboxylic group (scale inhibition and dispersion) and sulfonic acid group (strong polarity) in this copolymer, Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer has high calcium tolerance and good scale inhibition for calcium phosphate, calcium carbonate and zinc scale. When built with organophosphines, the synergic effect is obvious. Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer is suitable to be used in water quality of high pH and high alkaline, it is one of the ideal scale inhibitor and dispersant on high concentration index.

 

Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer can be used as scale inhibitor and dispersant in open circulating cool water system, oilfield refill water system, metallurgy system and iron & steel plants to prevent sediment of ferric oxide. When built with organophosphorines and zinc salt, the suitable pH value is 7.0~9.5.
Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic Acid Copolymer can also be used as dyeing auxiliaries for textile.

 

 

Applications: 
Acrylic fiber: A number of enhanced performance characteristics are imparted to acrylic, modified-acrylic, polypropylene and polyvinylidine fluoride fibers: dye receptivity, moisture absorbency, and static resistance.
Coating and adhesive: Its sulfonic acid group gives the monomers ionic character over a wide range of pH.

 

Anionic polyacrylamide is used as Acrylic fiber, Coating and adhesive, Detergents, Personal care, Medical hydrogel, Oil field applications, Water treatment applications, Crop protection, Membranes and Construction applications.

 

Anionic charges from Anionic polyacrylamide fixed on polymer particles enhance the chemical and shear stabilities of polymer emulsion and also reduce the amount of surfactants leaching out of paint film. It improves the thermal and mechanical properties of adhesives, and increases the adhesive strength of pressure-sensitive adhesive formulations.
Detergents: Enhances the washing performance of surfactants by binding multivalent cations and reducing dirt attachment.
Personal care: Strong polar and hydrophilic properties introduced to a high molecular weight Anionic polyacrylamide homopolymer are exploited as a very efficient lubricant characteristic for skin care.
Medical hydrogel: High water-absorbing and swelling capacity when Anionic polyacrylamide is introduced to a hydrogel are keys to medical applications. Hydrogel with Anionic polyacrylamide showed uniform conductivity, low electrical impedance, cohesive strength, appropriate skin adhesion, and biocompatible and capable of repeated use and have been used to electrocardiograph (ECG) electrodes, defibrillation electrode, electrosurgical grounding pads, and iontophoretic drug delivery electrodes.[21][22][23] In addition, polymers derived from Anionic polyacrylamide are used as the absorbing hydrogel and the tackifier component of wound dressings. Is used due to its high water absorption and retention capability as a monomer in superabsorbents e.g. for baby diapers.
Oil field applications: Polymers in oil field applications have to stand hostile environments and require thermal and hydrolytic stability and the resistance to hard water containing metal ions. For example, in drilling operations where conditions of high salinity, high temperature and high pressure are present, Anionic polyacrylamide copolymers can inhibit fluid loss and be used in oil field environments as scale inhibitors, friction reducers and water-control polymers, and in polymer flooding applications.
Water treatment applications: The cation stability of the Anionic polyacrylamide-containing polymers are very useful for water treatment processes. Such polymers with low molecular weights cannot only inhibit calcium, magnesium, and silica scale in cooling towers and boilers, but also help corrosion control by dispersing iron oxide. When high molecular weight polymers are used, they can be used to precipitate solids in the treatment of industrial effluent stream.
Crop protection: increases in dissolved and nanoparticulate polymer formulations bioavailability of pesticides in aqueous-organic formulations.
Membranes: It increases water flow, retention and fouling resistance of asymmetric ultrafiltration and microfiltration membranes and is being studied as an anionic component in polymer fuel cell membranes.

 

Anionic polyacrylamide is used in many areas due to its nature of both copolymerization and homopolymerization, including oilfield chemistry, water-treatment, synthetic fibers, printing and dyeing, plastic, paper-making, water-absorbent coatings, biomedical, magnetic materials and cosmetics .

Anionic polyacrylamide is reactive, hydrophilic, sulfonic acid acrylic monomer used to alter the chemical properties of wide variety of anionic polymers. Anionic polyacrylamide is a kind of vinyl monomer with sulfonic acid group, which has a good thermal stability. The decomposition temperature can be up to 210℃ and the temperature of sodium salt copolymer can reach 329℃. Its hydrolysis is very slow in aqueous solution. Sodium salt solution has good anti-hydrolysis performance with high PH value. Under acid condition, the hydrolysisresistant performance of its copolymer is better than that of polyacrylamide. The monomer can be made into crystal or sodium salt solution. Anionic polyacrylamide is used in many areas including water treatment, oil field, construction chemicals, hydrogels for medical applications, personal care products, emulsion coatings, adhesives, and rheology modifiers.

 

Properties
Hydrolytic and thermal stability: The geminal dimethyl group and the sulfomethyl group combine to sterically hinder the amide functionality and provide both hydrolytic and thermal stabilities to Anionic polyacrylamide-containing polymers.
Polarity and hydrophilicity: The sulfonate group gives the monomer a high degree of hydrophilicity and anionic character at wide range of pH. In addition, Anionic polyacrylamide is absorbing water readily and also imparts enhanced water absorption and transport characteristics to polymers.
Solubility: Anionic polyacrylamide is very soluble in water and dimethylformamide (DMF) and also shows limited solubility in most polar organic solvents.
Inhibition of divalent cation precipitation: Sulfonic acid in Anionic polyacrylamide is a very strong ionic group and ionizes completely in aqueous solutions. In applications where the precipitation of mineral salts is undesirable, the incorporation of a polymer containing even a small quantity of Anionic polyacrylamide can significantly inhibit the precipitation of divalent cations.

 

1. Water treatment: Homopolymer of Anionic polyacrylamide monomer or copolymers with acrylamide, acrylic acid monomer, could be as sludge dehydrating agent in the sewage purification process. As preservatives of the iron, zinc, aluminum, cooper and alloy in the closed water circulation systems, they also could be used as cleaning and inhibitor of heater, cooling towers, air purifiers and gas purification device.

2. Oilfield chemistry: This product is developed rapidly in the application of the oilfield chemistry. Application field covers such as oil well cement additives, treatment agent of drilling fluid, acidizing fluids, fracturing fluids, completion fluids and workover fluids additives.

3. Synthetic fibers: The Anionic polyacrylamide is an important monomer which could change the combination property of some synthetic fiber, particularly in the orion and the modacrylic fiber with chloride, and the dosage is the 1%-4% of the fiber. It could significantly improve the fiber whiteness,dyeability,antistatic,permeability and flame resistance properties.

4. Textile pulp: 2 - acrylamido -2 - methyl-propanesulfonic acid and ethyl acetate and acrylic acid copolymer is ideal slurry of cotton and polyester blended fabric, with the characteristics of using easily and being removed easily by water.

5. Paper making: The copolymer of 2 - acrylamido -2 - methyl-propane sulfonic acid and other water-soluble monomer is an indispensable chemical for all kinds of paper making factories, which can be used not only as drainage aids, the adhesives, increasing the strength of paper, but also be used as color-coated pigment dispersant.

Construction applications

Superplasticizers with Anionic polyacrylamide are used to reduce water in concrete formulations. Benefits of these additives include improved strength, improved workability, improved durability of cement mixtures. Redispersible polymer powder, when Anionic polyacrylamide is introduced, in cement mixtures control air pore content and prevent agglomeration of powders during the spray-drying process from the powder manufacturing and storage. Coating formulations with Anionic polyacrylamide-containing polymers prevent calcium ions from being formed as lime on concrete surface and improve the appearance and durability of coating.

2-Acrylamido-2-methylpropane sulfonic acid (Anionic polyacrylamide) is a reactive, hydrophilic, sulfonic acid acrylic monomer used to alter the chemical properties of wide variety of anionic polymers. In the 1970s, the earliest patents using this monomer were filed for acrylic fiber manufacturing. Today, there are over several thousands patents and publications involving use of Anionic polyacrylamide in many areas including water treatment, oil field, construction chemicals, hydrogels for medical applications, personal care products, emulsion coatings, adhesives, and rheology modifiers.

 

 

Ataman Chemicals © 2015 All Rights Reserved.