ACIDE 2-HYDROXYPROPANOÏQUE
L'acide 2-hydroxypropanoïque est un acide organique utilisé dans la production de bière ainsi que dans les industries cosmétique, pharmaceutique, alimentaire et chimique.
L'acide 2-hydroxypropanoïque est couramment utilisé comme conservateur et antioxydant.
L'acide 2-hydroxypropanoïque est également utilisé comme additif pour carburant, intermédiaire chimique, régulateur d'acidité et désinfectant.
Numéro CAS : 50-21-5
Numéro CE : 200-018-0
Formule moléculaire : C3H6O3
Masse molaire : 90,078 g·mol−1
acide lactique, acide 2-hydroxypropanoïque, acide DL-lactique, 50-21-5, acide 2-hydroxypropionique, acide du lait, lactate, Tonsillosan, acide lactique racémique, acide lactique ordinaire, acide éthylidènelactique, Lactovagan, Acidum lacticum, 26100-51 -6, Milchsaeure, Acide lactique, dl-, Kyselina mlecna, Lacticum acidum, DL-Milchsaeure, Acide lactique USP, (+/-)-Acide lactique, Acide propanoïque, 2-hydroxy-, Aéthylidenmilchsaeure, 598-82-3, Acide 1-hydroxyéthanecarboxylique, acide alpha-hydroxypropionique, acide lactique (naturel), (RS)-2-hydroxypropionsaeure, FEMA n° 2611, Milchsaure, Kyselina 2-hydroxypropanova, Lurex, acide propionique, 2-hydroxy-, Purac FCC 80, Purac FCC 88, Cheongin samrakhan, numéro FEMA 2611, CCRIS 2951, HSDB 800, Cheongin Haewoohwan, Cheongin Haejanghwan, SY-83, acide 2-hydroxypropionique, acide (+-)-2-hydroxypropanoïque, Biolac, NSC 367919, acide lactique, technologie qualité, acide propanoïque, hydroxy-, Chem-Cast, acide alpha-hydroxypropanoïque, AI3-03130, HIPURE 88, acide DL-lactique, EINECS 200-018-0, EINECS 209-954-4, EPA Pesticide Chemical Code 128929, Lactique acide, tamponné, NSC-367919, UNII-3B8D35Y7S4, acide 2-hydroxy-2-méthylacétique, BRN 5238667, INS NO.270, DTXSID7023192, acide (+/-)-2-hydroxypropanoïque, CHEBI:78320, INS-270, 3B8D35Y7S4, E 270, MFCD00004520, ACIDE LACTIQUE (+-), acide .alpha.-hydroxypropanoïque, acide .alpha.-hydroxypropionique, DTXCID003192, E-270, EC 200-018-0, NCGC00090972-01, 2-hydroxy-propionique acide, acide (R)-2-hydroxy-propionique ; HD-Lac-OH, C01432, Milchsaure [allemand], acide lactique [JAN], Kyselina mlecna [tchèque], acide D(-)-lactique, CAS-50- 21-5, acide 2 hydroxypropanoïque, acide 2 hydroxypropionique, Kyselina 2-hydroxypropanova [tchèque], acide lactique [USP: JAN], lactasol, 1-hydroxyéthane 1, acide carboxylique, acido lactico, DL-Milchsaure, (2RS) -2 -Acide hydroxypropanoïque, acide L-lactique, lactate (TN), 4b5w, acide propanoïque, (+-), acide DL-lactique, racémique, ACIDE LACTIQUE (II), (.+/-.)-Acide lactique, acide lactique (7CI,8CI), Acide lactique (JP17/USP), Acide lactique, 85 %, FCC, Acide lactique, Racemic, USP, NCIOpen2_000884, (+-)-ACIDE LACTIQUE, ACIDE DL-LACTIQUE [MI], ACIDE LACTIQUE [ WHO-IP], acide (RS)-2-hydroxypropanoïque, ACIDE LACTIQUE, DL-(II), LACTICUM ACIDUM [HPUS], acide 1-hydroxyéthane carboxylique, 33X04XA5AT, acide DL-lactique (90 %), CHEMBL1200559, acide lactique , naturel, >=85 %, BDBM23233, acide L-lactique ou acide dl-lactique, acide lactique, 85 pour cent, FCC, ACIDE LACTIQUE, DL-[II], acide DL-lactique, ~90 % (T), DL -Acide lactique, AR, >=88 %, acide DL-lactique, LR, >=88 %, ACIDE DL-LACTIQUE [WHO-DD], ACIDE LACTIQUE (MONOGRAPHIE EP), acide lactique, solution à 10 %, HY-B2227 , ACIDE LACTIQUE (MONOGRAPHIE USP), acide propanoïque, 2-hydroxy- (9CI), Tox21_111049, Tox21_202455, Tox21_303616, BBL027466, NSC367919, STL282744, AKOS000118855, AKOS017278364, Tox21_11 1049_1, ACIDUM LACTICUM [WHO-IP LATINE], AM87208, DB04398, SB44647, SB44652, acide propanoïque, 2-hydroxy-,(.+/-.)-, acide 2-hydroxypropionique, acide DL-lactique, NCGC00090972-02, NCGC00090972-03, NCGC00257515-01, NCGC00260004-01, 26811-96 -1, acide lactique, 85 %, réactif, ACS, CS-0021601, FT-0624390, FT-0625477, FT-0627927, FT-0696525, FT-0774042, L0226, EN300-19542, acide lactique, conforme aux tests USP. spécifications, D00111, F71201, A877374, acide DL-lactique, première qualité SAJ, 85,0-92,0 %, Q161249, acide DL-lactique, qualité spéciale JIS, 85,0-92,0 %, F2191-0200, Z104474158, BC10F553-5D5D-4388- BB74-378ED4E24908, acide lactique, étalon de référence de la Pharmacopée des États-Unis (USP), acide lactique, étalon secondaire pharmaceutique ; Matériau de référence certifié, acide DL-lactique 90 %, synthétique, répond aux spécifications analytiques de la Ph. Eur., 152-36-3
L'acide 2-hydroxypropanoïque a été découvert en 1780 par le chimiste suédois Carl Wilhelm Scheele, qui a isolé l'acide 2-hydroxypropanoïque du lait aigre sous forme de sirop brun impur et a donné à l'acide 2-hydroxypropanoïque un nom basé sur ses origines : « Mjölksyra ».
Le scientifique français Frémy a produit de l'acide 2-hydroxypropanoïque par fermentation, ce qui a donné lieu à une production industrielle en 1881.
L'acide 2-hydroxypropanoïque est produit par la fermentation du sucre et de l'eau ou par un procédé chimique et est généralement vendu dans le commerce sous forme liquide.
L'acide 2-hydroxypropanoïque racémique pur et anhydre est un solide cristallin blanc avec un point de fusion bas.
L'acide 2-hydroxypropanoïque a deux formes optiques, L(+) et D(-).
L'acide L(+)-2-hydroxypropanoïque est l'isomère biologique car l'acide 2-hydroxypropanoïque est naturellement présent dans le corps humain.
L'acide 2-hydroxypropanoïque peut être produit naturellement ou synthétiquement.
L'acide 2-hydroxypropanoïque commercial est produit naturellement par fermentation de glucides tels que le glucose, le saccharose ou le lactose.
Avec l'ajout de chaux ou de craie, les matières premières sont fermentées dans un fermenteur et du lactate de calcium brut est formé.
Le gypse est séparé du lactate de calcium brut, ce qui donne l'acide 2-hydroxypropanoïque brut.
L'acide 2-hydroxypropanoïque brut est purifié et concentré et l'acide L(+) 2-hydroxypropanoïque est le résultat.
L'acide 2-hydroxypropanoïque est un acide organique utilisé dans la production de bière ainsi que dans les industries cosmétique, pharmaceutique, alimentaire et chimique.
L'acide 2-hydroxypropanoïque est couramment utilisé comme conservateur et antioxydant.
L'acide 2-hydroxypropanoïque est également utilisé comme additif pour carburant, intermédiaire chimique, régulateur d'acidité et désinfectant.
Une utilisation spécifique de l'acide 2-hydroxypropanoïque est dans les solutions IV, où l'acide 2-hydroxypropanoïque est un électrolyte pour aider à reconstituer les fluides corporels.
L'acide 2-hydroxypropanoïque est également utilisé dans les solutions de dialyse, ce qui entraîne une incidence moindre d'effets secondaires par rapport à l'acétate de sodium qui peut également être utilisé.
L'acide 2-hydroxypropanoïque se présente sous la forme d'énantiomères R (D-) et S (L+) qui peuvent être fabriqués individuellement pour une pureté optique presque parfaite.
Cela signifie que l’acide 2-hydroxypropanoïque est idéal pour la production d’autres produits nécessitant une stéréochimie spécifique.
L'acide 2-hydroxypropanoïque est fréquemment utilisé dans l'industrie cosmétique en raison de son effet favorisant la production de collagène, aidant à raffermir la peau contre les rides et le relâchement.
L'acide 2-hydroxypropanoïque peut également provoquer une micro-desquamation, ce qui peut aider à réduire diverses cicatrices et taches de vieillesse.
L'acide 2-hydroxypropanoïque est une excellente solution pour les personnes ayant la peau sensible ou sèche pour laquelle les exfoliants ne fonctionnent pas.
L'acide 2-hydroxypropanoïque est utilisé comme conservateur alimentaire, agent de salaison et agent aromatisant.
L'acide 2-hydroxypropanoïque est un ingrédient des aliments transformés et est utilisé comme décontaminant lors de la transformation de la viande.
L'acide 2-hydroxypropanoïque est produit commercialement par fermentation de glucides tels que le glucose, le saccharose ou le lactose, ou par synthèse chimique.
L'acide 2-hydroxypropanoïque, également appelé « acide du lait », est un acide organique de formule chimique suivante : CH3CH(OH)CO2H.
Le nom officiel donné par l'Union internationale de chimie pure et appliquée (UICPA) est Acide lactique.
L'acide 2-hydroxypropanoïque peut être produit naturellement, mais l'importance de l'acide 2-hydroxypropanoïque est corrélée aux productions synthétiques.
L'acide 2-hydroxypropanoïque pur est un liquide incolore et hydroscopique ; L'acide 2-hydroxypropanoïque peut être défini comme un acide faible en raison de la dissociation partielle de l'acide 2-hydroxypropanoïque dans l'eau et de la constante de dissociation acide corrélée (Ka = 1,38 · 10−4).
L'acide 2-hydroxypropanoïque est un composé chiral avec une chaîne carbonée composée d'un atome central (chiral) et de deux atomes de carbone terminaux.
Un groupe hydroxyle est attaché à l'atome de carbone chiral tandis que l'un des atomes de carbone terminaux fait partie du groupe carboxylique et l'autre atome fait partie du groupe méthyle.
Par conséquent, il existe deux formes isomères optiquement actives de l'acide 2-hydroxypropanoïque : la forme L (+), également appelée acide (S) -2-hydroxypropanoïque, et la forme D (−), ou acide (R) -2-hydroxypropanoïque.
L'acide L(+)-2-hydroxypropanoïque est l'isomère biologique.
Mécanisme antibactérien de l'acide 2-hydroxypropanoïque sur les propriétés physiologiques et morphologiques de Salmonella Enteritidis, Escherichia coli et Listeria monocytogenes :
Les agents pathogènes pourraient être complètement inactivés après une exposition à l’acide 2-hydroxypropanoïque.
L'acide 2-hydroxypropanoïque a entraîné une fuite importante de protéines de trois agents pathogènes.
Les bandes de protéines bactériennes des cellules traitées à l'acide 2-hydroxypropanoïque se sont atténuées ou ont disparu.
Les tailles moyennes Z des agents pathogènes ont été réduites après le traitement à l'acide 2-hydroxypropanoïque.
L'acide 2-hydroxypropanoïque a provoqué des cellules effondrées, voire brisées, avec des creux et des interstices évidents.
L'acide 2-hydroxypropanoïque est largement utilisé pour inhiber la croissance d'agents pathogènes microbiens importants, mais le mécanisme antibactérien de l'acide 2-hydroxypropanoïque n'est pas encore entièrement compris.
L'objectif de cette étude était d'étudier le mécanisme antibactérien de l'acide 2-hydroxypropanoïque sur Salmonella Enteritidis, Escherichia coli et Listeria monocytogenes par mesure de taille, TEM et analyse SDS-PAGE.
Les résultats ont indiqué que 0,5 % d’acide 2-hydroxypropanoïque pourrait complètement inhiber la croissance des cellules de Salmonella Enteritidis, E. coli et L. monocytogenes.
Pendant ce temps, l’acide 2-hydroxypropanoïque a entraîné une fuite de protéines des cellules de Salmonella, E. coli et Listeria, et la quantité de fuite après 6 heures d’exposition atteignait respectivement 11,36, 11,76 et 16,29 μg/mL.
Cinquante souches de Staphylococcus aureus, de streptocoques bêta-hémolytiques, d'espèces Proteus, d'Esch coli et de Pseudomonas aeruginosa ont été soumises à 2 %, 1 % et 0,1 % d'acide 2-hydroxypropanoïque dans de l'eau peptoriée.
La concentration minimale inhibitrice d'acide 2-hydroxypropanoïque pour toutes les souches de chacun de ces organismes était de 0,1 % ou 1 %.
En fonction de la concentration en acides 2-hydroxypropanoïque, l'acide 2-hydroxypropanoïque ajouté à l'eau peptonée abaisse le pH à 2,5-4, ce qui en lui-même a un certain effet inhibiteur sur les micro-organismes.
L'acide 2-hydroxypropanoïque conserve cependant son effet inhibiteur même si le Ph de l'eau peptonée est ramené à 7,3.
L'acide 2-hydroxypropanoïque est un agent non toxique et non sensibilisant car l'acide 2-hydroxypropanoïque est un métabolite normal de l'organisme.
Ainsi, l’acide 2-hydroxypropanoïque peut être utilisé comme agent antibactérien sûr et efficace pour une application locale.
L'acide 2-hydroxypropanoïque est un intermédiaire normal dans la fermentation (oxydation, métabolisme) du sucre.
L'acide 2-hydroxypropanoïque est une forme concentrée utilisée en interne pour prévenir la fermentation gastro-intestinale.
L'acide 2-hydroxypropanoïque est converti en glucose via la gluconéogenèse dans le foie et libéré dans la circulation.
L'acide 2-hydroxypropanoïque est un acide organique présent naturellement dans le corps humain et dans les aliments fermentés.
L'acide 2-hydroxypropanoïque est utilisé dans une large gamme d'aliments, de boissons, de soins personnels, de soins de santé, de nettoyants, d'aliments pour animaux et de produits chimiques comme régulateur d'acidité doux avec des propriétés améliorant la saveur et antibactériennes.
La production commerciale d’acide 2-hydroxypropanoïque se fait généralement par fermentation.
Parce que la forme L(+) est préférée pour une meilleure métabolisation de l'acide 2-hydroxypropanoïque, Jungbunzlauer a choisi de produire de l'acide L(+)-2-hydroxypropanoïque pur par fermentation traditionnelle de glucides naturels.
L'acide L(+)-2-hydroxypropanoïque est un liquide sirupeux, incolore à jaunâtre, presque inodore, avec un goût acide doux.
L'acide 2-hydroxypropanoïque est disponible dans le commerce sous forme de solutions aqueuses de diverses concentrations.
Ces solutions sont stables dans des conditions normales de stockage.
L'acide 2-hydroxypropanoïque n'est pas toxique pour les humains et l'environnement, mais les solutions concentrées d'acide 2-hydroxypropanoïque peuvent provoquer une irritation cutanée et des lésions oculaires.
L'acide 2-hydroxypropanoïque est facilement biodégradable.
En raison de l'hygroscopique élevée de l'acide 2-hydroxypropanoïque, des solutions aqueuses concentrées d'acide 2-hydroxypropanoïque sont généralement utilisées - des liquides sirupeux, incolores et inodores.
L'oxydation de l'acide 2-hydroxypropanoïque s'accompagne généralement d'une décomposition.
Sous l'action de HNO 3 ou O 2 de l'air en présence de Cu ou Fe, il se forme HCOOH, CH 3 COOH, (COOH) 2 , CH 3 CHO, CO 2 et de l'acide pyruvique.
La réduction de l'acide 2-hydroxypropanoïque HI conduit à l'acide propionique, et la réduction en présence de Re-mobile conduit au propylène glycol.
L'acide 2-hydroxypropanoïque se déshydrate en acide acrylique lorsqu'il est chauffé avec HBr, forme de l'acide 2-bromopropionique lorsque le sel de Ca réagit avec PCl 5 ou SOCl 2 -chlorure de 2-chloropropionyle.
En présence d'acides minéraux, l'auto-estérification de l'acide 2-hydroxypropanoïque se produit avec formation de lactone, ainsi que de polyesters linéaires.
Lorsque l'acide 2-hydroxypropanoïque interagit avec des alcools, des hydroxyacides RCH 2 CH (OH) COOH se forment et lorsque les sels de l'acide 2-hydroxypropanoïque réagissent avec des esters d'alcool.
Les sels et esters de l’acide 2-hydroxypropanoïque sont appelés lactates.
L'acide 2-hydroxypropanoïque est formé à la suite de la fermentation de l'acide 2-hydroxypropanoïque (avec du lait aigre, de la choucroute, des légumes marinés, du fromage affiné, des aliments ensilés); L'acide D-2-hydroxypropanoïque se trouve dans les tissus des animaux, des plantes ainsi que dans les micro-organismes.
Dans l'industrie, l'acide 2-hydroxypropanoïque est obtenu par hydrolyse de l'acide 2-chloropropionique et des sels de l'acide 2-hydroxypropanoïque (100°C) ou du lactonitrile CH 3 CH (OH) CN (100°C, H 2 SO 4 ), suivi du formation d'esters dont l'isolement et l'hydrolyse conduisent à une qualité élevée.
D'autres méthodes de production d'acide 2-hydroxypropanoïque sont connues : l'oxydation du propylène avec des oxydes d'azote (15-20°C) suivie d'un traitement par H 2 SO 4 , l'interaction de CH 3 CHO avec CO (200°C, 20 MPa) .
L'acide 2-hydroxypropanoïque est utilisé dans l'industrie alimentaire, dans la teinture par mordant, dans la production de cuir, dans les ateliers de fermentation comme agent bactéricide, pour la production de médicaments et de plastifiants.
Les lactates d'éthyle et de butyle sont utilisés comme solvants pour les éthers de cellulose, les huiles siccatives, les huiles végétales ; lactate de butyle - ainsi qu'un solvant pour certains polymères synthétiques.
L'acide 2-hydroxypropanoïque est un acide organique.
L'acide 2-hydroxypropanoïque a une formule moléculaire CH3CH(OH)COOH.
L'acide 2-hydroxypropanoïque est blanc à l'état solide et l'acide 2-hydroxypropanoïque est miscible à l'eau.
À l’état dissous, l’acide 2-hydroxypropanoïque forme une solution incolore.
La production comprend à la fois la synthèse artificielle et les sources naturelles.
L'acide 2-hydroxypropanoïque est un acide alpha-hydroxy (AHA) en raison de la présence d'un groupe hydroxyle adjacent au groupe carboxyle.
L'acide 2-hydroxypropanoïque est utilisé comme intermédiaire de synthèse dans de nombreuses industries de synthèse organique et dans diverses industries biochimiques.
La base conjuguée de l’acide 2-hydroxypropanoïque est appelée lactate.
En solution, l'acide 2-hydroxypropanoïque peut s'ioniser, produisant l'ion lactate CH3CH(OH)CO−2.
Comparé à l'acide acétique, le pKa des acides 2-hydroxypropanoïques est inférieur de 1 unité, ce qui signifie que l'acide 2-hydroxypropanoïque est dix fois plus acide que l'acide acétique.
Cette acidité plus élevée est la conséquence de la liaison hydrogène intramoléculaire entre le groupe α-hydroxyle et le groupe carboxylate.
L'acide 2-hydroxypropanoïque est chiral et composé de deux énantiomères.
L’un est connu sous le nom d’acide l-(+)-2-hydroxypropanoïque ou acide (S)-2-hydroxypropanoïque et l’autre, image miroir de l’acide 2-hydroxypropanoïque, est l’acide d-(−)-2-hydroxypropanoïque ou (R)- Acide 2-hydroxypropanoïque.
Un mélange des deux en quantités égales est appelé acide dl-2-hydroxypropanoïque, ou acide 2-hydroxypropanoïque racémique.
L'acide 2-hydroxypropanoïque est hygroscopique.
L'acide dl-2-hydroxypropanoïque est miscible à l'eau et à l'éthanol au-dessus du point de fusion de l'acide 2-hydroxypropanoïque, qui est d'environ 16, 17 ou 18 °C.
L'acide d-2-hydroxypropanoïque et l'acide l-2-hydroxypropanoïque ont un point de fusion plus élevé.
L'acide 2-hydroxypropanoïque produit par la fermentation du lait est souvent racémique, bien que certaines espèces de bactéries produisent uniquement de l'acide (R)-2-hydroxypropanoïque.
D'autre part, l'acide 2-hydroxypropanoïque produit par la respiration anaérobie dans les muscles des animaux a la configuration (S) et est parfois appelé acide « sarcolactique », du grec « sarx » pour chair.
Chez les animaux, le L-lactate est constamment produit à partir du pyruvate via l'enzyme lactate déshydrogénase (LDH) lors d'un processus de fermentation au cours du métabolisme et de l'exercice normaux.
La concentration de l'acide 2-hydroxypropanoïque n'augmente pas jusqu'à ce que le taux de production de lactate dépasse le taux d'élimination du lactate, qui est régi par un certain nombre de facteurs, notamment les transporteurs monocarboxylates, la concentration et l'isoforme de la LDH et la capacité oxydative des tissus.
La concentration de lactate sanguin est généralement de 1 à 2 mM au repos, mais peut atteindre plus de 20 mM lors d'un effort intense et jusqu'à 25 mM par la suite.
En plus d'autres rôles biologiques, l'acide l-2-hydroxypropanoïque est le principal agoniste endogène du récepteur de l'acide hydroxycarboxylique 1 (HCA1), qui est un récepteur couplé aux protéines G couplé à Gi/o (GPCR).
Dans l'industrie, la fermentation de l'acide 2-hydroxypropanoïque est réalisée par des bactéries de l'acide 2-hydroxypropanoïque, qui convertissent les glucides simples tels que le glucose, le saccharose ou le galactose en acide 2-hydroxypropanoïque.
Ces bactéries peuvent également se développer dans la bouche ; l'acide qu'ils produisent est responsable de la carie dentaire appelée carie.
En médecine, le lactate est l'un des principaux composants de la solution lactée de Ringer et de la solution de Hartmann.
Ces liquides intraveineux sont constitués de cations sodium et potassium ainsi que d'anions lactate et chlorure en solution avec de l'eau distillée, généralement à des concentrations isotoniques avec le sang humain.
L'acide 2-hydroxypropanoïque est le plus souvent utilisé pour la réanimation liquidienne après une perte de sang due à un traumatisme, une intervention chirurgicale ou des brûlures.
L'acide 2-hydroxypropanoïque est un acide hydroxycarboxylique CH3CH(OH)COOH avec deux stéréoisomères (D(-) et L(+)) et l'acide 2-hydroxypropanoïque a plusieurs applications dans les industries alimentaires, chimiques, pharmaceutiques et de soins de santé.
L'acide 2-hydroxypropanoïque est principalement utilisé pour des applications alimentaires et pharmaceutiques, préférentiellement l'isomère L(+), puisque l'acide 2-hydroxypropanoïque est le seul isomère de l'acide 2-hydroxypropanoïque produit dans le corps humain.
Environ 20 à 30 % de la production d'acide 2-Hydroxypropanoïque est utilisée pour obtenir des biopolymères (acide poly2-Hydroxypropanoïque).
D’autres utilisations de l’acide 2-hydroxypropanoïque incluent les fibres et les solvants verts.
L'acide 2-hydroxypropanoïque est entièrement disponible dans le commerce et est en grande partie (90 %) produit par des bactéries par fermentation anaérobie des sucres.
L'acide 2-hydroxypropanoïque peut également être produit commercialement par synthèse chimique.
La voie de production chimique donne un mélange racémique optiquement inactif (avec la même quantité d'isomères L et D), tandis que la voie de fermentation anaérobie donne majoritairement l'un des deux stéréoisomères, selon le micro-organisme choisi.
L’option biotechnologique est largement disponible grâce à l’origine renouvelable de l’acide 2-hydroxypropanoïque.
L'acide 2-hydroxypropanoïque peut être produit par fermentation de sucres issus de différentes biomasses, telles que : les cultures d'amidon, les cultures sucrières, les matières lignocellulosiques et également à partir de lactosérum (un résidu de la production de fromage).
La majeure partie de la production mondiale repose sur la fermentation homoplastique de sucres (issus de cultures d'amidon ou de sucre) où l'acide 2-hydroxypropanoïque est produit comme seul produit.
Les systèmes de production conventionnels nécessitent l'ajout d'hydroxyde de calcium pour contrôler le pH de fermentation.
Cette procédure aboutit à du lactate de calcium comme produit final.
Plusieurs étapes sont nécessaires pour finalement obtenir et purifier l'acide 2-hydroxypropanoïque : filtration, acidification, adsorption de carbone, évaporation, estérification, hydrolyse et distillation.
Le procédé conventionnel est associé à des coûts élevés (en raison de la procédure de purification complexe) et à de mauvaises performances environnementales en raison de la production de grandes quantités d'effluents chimiques (par exemple le sulfate de calcium).
De nouvelles technologies de séparation sont en cours de développement, comme l'électrodialyse bipolaire, avec des résultats prometteurs.
L'acide 2-hydroxypropanoïque, l'ingrédient naturel le plus fondamental de l'industrie laitière
Dans les produits laitiers, l’acide 2-hydroxypropanoïque est l’un des ingrédients les plus courants.
L’objectif des acides 2-hydroxypropanoïques est généralement de régulateur d’acide et d’arôme.
Le goût légèrement aigre observé dans les yaourts, fromages et autres produits laitiers est généralement le résultat d'une fermentation à partir de l'acide 2-hydroxypropanoïque.
La saveur caractéristique du pain au levain résulte également de l’acide 2-hydroxypropanoïque pendant le processus de cuisson.
Avec l’ajout de ce supplément polyvalent, le produit peut être facilement acidifié pour atteindre les niveaux de pH appropriés, tout en laissant les arômes naturels intacts.
L'acide 2-hydroxypropanoïque, DL- est l'isomère racémique de l'acide 2-hydroxypropanoïque, l'isoforme biologiquement active chez l'homme.
L'acide 2-hydroxypropanoïque ou lactate est produit pendant la fermentation à partir du pyruvate par la lactate déshydrogénase.
Cette réaction, en plus de produire de l'acide 2-hydroxypropanoïque, produit également du nicotinamide adénine dinucléotide (NAD) qui est ensuite utilisé dans la glycolyse pour produire de l'adénosine triphosphate (ATP) comme source d'énergie.
L’acide 2-hydroxypropanoïque se présente sous la forme d’un liquide sirupeux incolore à jaune, inodore.
Corrosif pour les métaux et les tissus.
Utilisé pour fabriquer des produits laitiers cultivés, comme conservateur alimentaire et pour fabriquer des produits chimiques.
Un intermédiaire normal dans la fermentation (oxydation, métabolisme) du sucre.
La forme concentrée est utilisée en interne pour prévenir la fermentation gastro-intestinale.
Le lactate de sodium est le sel de sodium de l'acide 2-hydroxypropanoïque et a un léger goût salin.
L'acide 2-hydroxypropanoïque est produit par fermentation d'une source de sucre, telle que le maïs ou la betterave, puis par neutralisation de l'acide 2-hydroxypropanoïque résultant pour créer un composé de formule NaC3H5O3.
L'acide 2-hydroxypropanoïque était l'un des ingrédients actifs de Phexxi, un agent contraceptif non hormonal approuvé par la FDA en mai 2020.
L'acide 2-hydroxypropanoïque (chimiquement, acide alpha ou 2-hydroxypropionique) joue un rôle dans les processus métaboliques de l'organisme ; dans le sang rouge et dans les tissus musculaires squelettiques en tant que produit du métabolisme du glucose et du glycogène.
L'acide 2-hydroxypropanoïque est un « acide alpha-hydroxy : qui possède un groupe hydroxyle sur l'atome de carbone à côté du groupe acide.
Si le groupe hydroxy se trouve sur le deuxième carbone à côté du groupe acide, l’acide 2-hydroxypropanoïque est appelé acide bêta-hydroxy.
L'acide 2-hydroxypropanoïque est converti in vivo en acide pyruvique (un acide alpha-céto) qui apparaît comme produit intermédiaire dans le métabolisme des glucides et des protéines dans l'organisme.
L'acide 2-hydroxypropanoïque se présente sous la forme de deux isomères optiques puisque l'atome de carbone central est lié à quatre groupes différents ; une forme dextro et une forme lévo (ou un mélange racémique inactif des deux) ; seule la forme lévo participe au métabolisme animal. L'acide 2-hydroxypropanoïque est présent dans le lait aigre et les produits laitiers tels que le fromage, le yaourt et les vins koumiss, libanais.
L’acide 2-hydroxypropanoïque provoque la carie dentaire puisque les bactéries de l’acide 2-hydroxypropanoïque opèrent dans la bouche.
Bien que l'acide 2-hydroxypropanoïque puisse être préparé par synthèse chimique, la production d'acide 2-hydroxypropanoïque par fermentation du glucose et d'autres substances sucrées en présence d'alcalis tels que la chaux ou le carbonate de calcium est une méthode moins coûteuse.
La molécule de glucose à six carbones est décomposée en deux molécules de composés à trois carbones (acide 2-hydroxypropanoïque), au cours de cette condition anaérobie.
L'acide 2-hydroxypropanoïque synthétique est utilisé commercialement dans le tannage du cuir et la teinture de la laine ; comme agent aromatisant et conservateur dans la transformation des aliments et les boissons gazeuses ; et comme matière première dans la fabrication de plastiques, de solvants, d'encres et de laques ; comme catalyseur dans de nombreux processus chimiques.
L'acide 2-hydroxypropanoïque est disponible sous forme de solutions aqueuses de diverses concentrations, généralement de 22 à 85 pour cent (l'acide 2-hydroxypropanoïque pur est une substance cristalline incolore.)
Bien que l'acide 2-hydroxypropanoïque soit généralement associé au lait et aux produits laitiers, l'acide 2-hydroxypropanoïque peut également être trouvé dans de nombreux autres produits alimentaires fermentés, notamment les confiseries, les confitures, les desserts glacés et les légumes marinés.
Les bactéries de l'acide 2-hydroxypropanoïque (LAB) sont un groupe hétérogène de bactéries qui jouent un rôle important dans divers processus de fermentation.
Ils fermentent les glucides alimentaires et produisent de l’acide 2-hydroxypropanoïque comme principal produit de fermentation.
De plus, la dégradation des protéines et des lipides et la production de divers alcools, aldéhydes, acides, esters et composés soufrés contribuent au développement d'arômes spécifiques dans différents produits alimentaires fermentés.
La principale application du LAB concerne les cultures starter, avec une énorme variété de produits laitiers fermentés (c'est-à-dire fromage, yaourt, laits fermentés), de viande, de poisson, de fruits, de légumes et de produits céréaliers.
En outre, ils contribuent à la saveur, à la texture et à la valeur nutritionnelle des aliments fermentés et sont donc utilisés comme cultures complémentaires.
L'accélération de la maturation des fromages, l'amélioration de la texture du yaourt avec la production d'exo polysaccharides et le contrôle des fermentations secondaires dans l'élaboration du vin en sont quelques exemples.
La production de bactériocines et de composés antifongiques a conduit à l'application de cultures bioprotectrices dans certains aliments.
De plus, les propriétés bénéfiques pour la santé bien documentées de certains LAB ont conduit à l'ajout de souches sélectionnées, en combinaison avec des bifidobactéries, comme cultures probiotiques ayant diverses applications dans l'industrie alimentaire.
L'acide 2-hydroxypropanoïque est un acide organique généré par la fermentation microbienne.
Plusieurs études ont testé une concentration de 2 % d'acide 2-hydroxypropanoïque comme désinfectant, soit seul, soit en combinaison avec un agent tensioactif.
Les désinfectants à base d’acide 2-hydroxypropanoïque interfèrent avec la perméabilité des membranes cellulaires et les fonctions cellulaires telles que le transport des nutriments.
Ces désinfectants sont très prometteurs et des recherches sont en cours concernant leurs utilisations.
Par exemple, dans une étude récente, dix désinfectants disponibles dans le commerce ont été testés pour leur efficacité contre Listeria monocytogenes sur des planches à découper en polyéthylène haute densité.
De tous les produits testés, qui comprenaient des QAC et de l'hypochlorite de sodium, un désinfectant à base de lactique était le plus efficace contre les cellules du biofilm.
L’acide 2-hydroxypropanoïque est utilisé depuis les années 1990 comme produit chimique fin (production de 60 000 à 80 000 tonnes par an−1).
Une part importante (25 000 tonnes an−1) est utilisée comme additif dans l'industrie agroalimentaire.
La deuxième application principale est celle d’élément de base pour les polymères, solvants et plastifiants verts.
L'acide 2-hydroxypropanoïque est produit chimiquement par hydrocyanation suivie de l'hydrolyse de la cyanhydrine.
Les principaux inconvénients sont la manipulation du cyanure d'hydrogène (HCN), la production de (NH4)2SO4 (1 éq) et les étapes de purification complexes pour obtenir de l'acide 2-hydroxypropanoïque de qualité alimentaire car l'acide racémique est obtenu.
Pour surmonter ces difficultés, la fermentation anaérobie des glucides à l'aide de Lactobacillus delbrueckii est une bonne alternative car seul l'acide (S)-2-Hydroxypropanoïque est obtenu en une seule étape.
La fermentation est réalisée à 50 °C pendant 2 à 8 jours avec un rendement de 85 à 95 % et la concentration du produit est de 100 gl−1.
Les bactéries de l’acide 2-hydroxypropanoïque (LAB) jouent un rôle important dans les applications alimentaires, agricoles et cliniques.
La description générale des bactéries incluses dans le groupe est celle des cocci ou bâtonnets à Gram positif, non sporulants et non respirants, qui produisent de l'acide 2-hydroxypropanoïque comme produit final principal lors de la fermentation des glucides.
L'accord commun est qu'il existe un groupe central composé de quatre genres ; Lactobacilles, Leuconostoc, Pediococcus et Streptococcus.
Des révisions taxonomiques récentes ont proposé plusieurs nouveaux genres et le groupe restant comprend désormais les suivants : Aerococcus, Alloiococcus, Carnobacterium, Dolosigranulum, Enterococcus, Globicatella, Lactococcus, Oenococcus, Tetragenococcus, Vagococcus et Weissella.
Leur importance est principalement associée à leur activité métabolique sûre lors de leur croissance dans des aliments utilisant le sucre disponible pour la production d'acides organiques et d'autres métabolites.
Leur présence fréquente dans les aliments ainsi que leurs utilisations à long terme contribuent à leur acceptation naturelle comme GRAS (généralement reconnu comme sûr) pour la consommation humaine.
Les trois principales voies impliquées dans la fabrication et le développement de l'arôme des produits alimentaires fermentés sont les suivantes :
1) glycolyse (fermentation des sucres)
2) la lipolyse (dégradation des graisses) et
3) protéolyse (dégradation des protéines)
Le lactate est le principal produit généré par le métabolisme des glucides et une fraction du pyruvate intermédiaire peut alternativement être convertie en diacétyle, acétoïne, acétaldéhyde ou acide acétique (dont certains peuvent être importants pour les arômes typiques du yaourt).
La contribution du LAB à la lipolyse est relativement faible, mais la protéolyse est la voie biochimique clé pour le développement de la saveur dans les aliments fermentés.
La dégradation de ces composants peut être ensuite convertie en divers alcools, aldéhydes, acides, esters et composés soufrés pour le développement d'un arôme spécifique dans les produits alimentaires fermentés.
La génétique du LAB a été revue et des séquences complètes du génome d'un grand nombre de LAB ont été publiées depuis 2001, date à laquelle le premier génome du LAB a été séquencé et publié.
Acide 2-hydroxypropanoïque Cultures complémentaires :
Les cultures secondaires, ou cultures complémentaires ou adjuvants, sont définies comme toute culture délibérément ajoutée à un moment donné de la fabrication d'aliments fermentés, mais dont le rôle principal n'est pas la production d'acide.
Des cultures complémentaires sont utilisées dans la fabrication du fromage pour équilibrer une partie de la biodiversité supprimée par la pasteurisation, l'amélioration de l'hygiène et l'ajout de cultures starter à souche définie.
Il s'agit principalement de LAB non starter qui ont un impact significatif sur l'arôme et accélèrent le processus de maturation.
Les polysaccharides extracellulaires (EPS) sont produits par diverses bactéries et sont présents sous forme de polysaccharides capsulaires liés à la surface cellulaire ou libérés dans le milieu de croissance.
Ces polymères jouent un rôle majeur dans la production de yaourts, de fromages, de crèmes fermentées et de desserts à base de lait où ils contribuent à la texture, à la sensation en bouche, à la perception gustative et à la stabilité des produits finaux.
De plus, l'acide 2-hydroxypropanoïque a été suggéré que ces EPS ou les laits fermentés contenant ces EPS sont actifs en tant que prébiotiques, hypocholestérolémiants et immunomodulateurs.
Souches productrices d'EPS de Streptococcus thermophilus et Lactobacillus delbreuckii ssp. Il a été démontré que bulgaricus améliore la texture et la viscosité du yaourt et réduit la synérèse.
Pour la production de vin, LAB est impliqué dans la fermentation malolactique, c'est-à-dire une fermentation secondaire, qui implique la conversion du L-malate en L-lactate et CO2 via la malate décarboxylase, également connue sous le nom d'enzyme malolactique, entraînant une réduction de l'acidité du vin, assurant une stabilisation microbiologique et des modifications de l'arôme du vin.
Des activités antifongiques de LAB ont été rapportées.
En outre; Les souches LAB ont également la capacité de réduire les mycotoxines fongiques, soit en produisant des métabolites anti-mycotoxinogènes, soit en les absorbant.
Pour que les LAB soient utilisées comme cultures starter bioprotectrices, elles doivent posséder une gamme de caractéristiques physiques et biochimiques et, plus important encore, la capacité d'atteindre une croissance et une production suffisante de métabolites antimicrobiens, qui doivent être démontrées dans l'environnement alimentaire spécifique.
Culture probiotique :
Les LAB sont considérées comme un groupe majeur de bactéries probiotiques ; le probiotique a été défini par Fuller comme « un complément alimentaire microbien vivant qui affecte de manière bénéfique l'animal hôte en améliorant l'équilibre microbien intestinal de l'acide 2-hydroxypropanoïque ».
Salminen et coll. ont proposé que les probiotiques soient des préparations de cellules microbiennes ou des composants de cellules microbiennes qui ont un effet bénéfique sur la santé et le bien-être de l'hôte.
Les cultures commerciales utilisées dans les applications alimentaires comprennent principalement des souches de Lactobacillus spp., Bifidobacterium spp. et Propionibacterium spp. Lactobacillus acidophilus, Lactobacillus casei, Lb. reuteri, Lactobacillus rhamnosus et Lb. plantarum sont les LAB les plus utilisés dans les aliments fonctionnels contenant des probiotiques.
Le fromage Fresco argentin, le Cheddar et le Gouda sont quelques exemples d'applications du probiotique LAB, en combinaison avec les bifidobactéries, dans les fromages.
Apparemment, ces effets sont spécifiques à l’espèce et à la souche, et le grand défi réside dans l’utilisation de cultures probiotiques composées de plusieurs espèces.
De plus, les LAB, qui font partie du microbiote intestinal, fermentent divers substrats tels que les amines biogènes et les composés allergènes en acides gras à chaîne courte et autres acides et gaz organiques.
Ces dernières années, les génomes de plusieurs espèces de probiotiques ont été séquencés, ouvrant ainsi la voie à l'application des technologies « omiques » à l'étude des activités probiotiques.
De plus, bien que des probiotiques recombinants aient été construits, l’application industrielle de bactéries génétiquement modifiées est toujours entravée par des problèmes juridiques et par une opinion publique plutôt négative dans le secteur alimentaire.
Conclusion:
Les LAB sont les micro-organismes les plus couramment utilisés pour la fermentation et la conservation des aliments.
Leur importance est principalement associée à leur activité métabolique sûre lors de leur croissance dans des aliments utilisant le sucre disponible pour la production d'acides organiques et d'autres métabolites.
Les progrès en génétique, biologie moléculaire, physiologie et biochimie des LAB ont fourni de nouvelles connaissances et applications pour ces bactéries.
Des cultures bactériennes présentant des traits spécifiques ont été développées au cours des 17 dernières années, depuis la découverte de la séquence complète du génome de Lc. lactis ssp. lactis IL1403 et une variété de cultures commerciales de démarrage, fonctionnelles, bioprotectrices et probiotiques présentant des propriétés souhaitables ont été commercialisées.
Cependant, le grand défi pour l’industrie alimentaire est de produire des cultures de souches multiples ayant de multiples fonctions pour des produits spécifiques provenant de régions spécifiques du monde.
L'acide 2-hydroxypropanoïque constitue également un défi pour produire des aliments dont les caractéristiques sensorielles et la valeur nutritionnelle sont similaires aux produits traditionnels, même avec des propriétés particulières bénéfiques pour la santé, dans le cadre d'un processus standardisé, sûr et contrôlé.
Acide 2-hydroxypropanoïque et lactate :
L'acide 2-hydroxypropanoïque est un acide faible, ce qui signifie que l'acide 2-hydroxypropanoïque ne se dissocie que partiellement dans l'eau.
L'acide 2-hydroxypropanoïque se dissocie dans l'eau, donnant naissance à des ions lactate et H+.
Il s'agit d'une réaction réversible et l'équilibre est représenté ci-dessous.
CH3CH(OH)CO2H H+ + CH3CH(OH)CO2-Ka= 1,38 x 10-4
En fonction du pH environnemental, les acides faibles tels que l'acide 2-hydroxypropanoïque sont présents soit sous forme d'acide sous forme non dissociée d'acide 2-hydroxypropanoïque à faible pH, soit sous forme de sel ionique à un pH plus élevé.
Le pH auquel 50 % de l’acide est dissocié est appelé pKa, qui pour l’acide 2-hydroxypropanoïque est de 3,86.
Dans des circonstances physiologiques, le pH est généralement supérieur au pKa, de sorte que la majorité de l'acide 2-hydroxypropanoïque présent dans l'organisme sera dissociée et présente sous forme de lactate.
Sous la forme non dissociée (unionisée), les substrats sont capables de traverser les membranes lipidiques, contrairement à la forme dissociée (ionisée) qui ne le peut pas.
L'acide 2-hydroxypropanoïque (acide 2-hydroxypropionique) est l'un des produits chimiques à grande échelle produits par fermentation.
Les matières premières couramment utilisées sont des glucides obtenus à partir de différentes sources comme l’amidon de maïs, la canne à sucre ou l’amidon de tapioca – en fonction de la disponibilité locale.
Les glucides sont hydrolysés en monosaccharides puis fermentés en l'absence d'oxygène par des micro-organismes en acide 2-hydroxypropanoïque.
L'acide 2-hydroxypropanoïque est l'élément constitutif de l'acide poly2-hydroxypropanoïque, mais l'acide 2-hydroxypropanoïque est également utilisé dans une grande variété d'applications alimentaires et cosmétiques.
L'acide 2-hydroxypropanoïque d'origine biologique est optiquement actif et la production d'acide l-(+)- ou d-(–)-2-hydroxypropanoïque peut être dirigée avec des micro-organismes issus de la bio-ingénierie.
L’acide 2-hydroxypropanoïque (acide 2-hydroxypropionique) fait partie des produits chimiques produits en grande quantité par voie microbienne, avec un volume de production mondial annuel de l’ordre de 370 000 tonnes.
La fermentation de l'acide 2-hydroxypropanoïque fait partie des fermentations industrielles les plus anciennes, avec une production industrielle par fermentation commençant dans les années 1880.
Soixante-quinze pour cent de la production mondiale actuelle d'acide 2-hydroxypropanoïque se produit dans les installations de fermentation de Galactic, PURAC Corporation, Cargill Incorporated, Archer Daniels Midland Company et des coentreprises dérivées de ces sociétés.
Historiquement, l'acide 2-hydroxypropanoïque a été principalement utilisé dans les aliments pour l'acidulation et la conservation, et l'acide 2-hydroxypropanoïque a obtenu le statut GRAS (généralement reconnu comme sûr) par la FDA.
L'acide 2-hydroxypropanoïque trouve également des utilisations dans le tannage du cuir, les cosmétiques, les applications pharmaceutiques, ainsi que diverses autres niches.
La production mondiale d'acide 2-hydroxypropanoïque a été multipliée par 10 au cours de la dernière décennie en raison, en grande partie, de la demande accrue de produits verts dérivés de l'acide 2-hydroxypropanoïque, notamment le lactate d'éthyle et l'acide poly2-hydroxypropanoïque (PLA).
Le lactate d'éthyle peut être utilisé dans une variété de solvants verts, et bien que la faible toxicité humaine de l'acide 2-hydroxypropanoïque par rapport aux alternatives aux hydrocarbures soit attrayante, le prix est cité comme la principale raison de l'utilisation limitée du marché de l'acide 2-hydroxypropanoïque.
Le PLA est un polymère considéré comme une alternative verte aux plastiques dérivés du pétrole en raison de la biodégradabilité de l'acide 2-hydroxypropanoïque et de la réduction de son empreinte carbone.
Les produits PLA sont sur le marché dans une large gamme d'applications, notamment l'emballage, les fibres et les mousses.
Le principal producteur mondial de PLA est NatureWorks LLC, actuellement détenue à 100 % par Cargill Incorporated.
Le principal coût de la production de PLA et de lactate d’éthyle est le coût de la matière première, à savoir l’acide 2-hydroxypropanoïque.
Les paramètres clés qui déterminent le coût de l’acide 2-hydroxypropanoïque sont le taux, le titre et le rendement, tant dans les opérations de fermentation que dans les unités de récupération de produits en aval.
De plus, la production d’acide 2-hydroxypropanoïque représente une grande partie de l’apport énergétique et des émissions de gaz à effet de serre (GES) des produits dérivés de l’acide 2-hydroxypropanoïque.
Ces coûts carbone peuvent être très préoccupants pour la commercialisation et la viabilité d’un produit vert.
Comme indiqué précédemment, la production d’acide 2-hydroxypropanoïque se produit depuis plus de 100 ans, avec seulement de modestes changements dans les conditions ou les organismes hôtes.
L'acide 2-hydroxypropanoïque est produit par fermentation, traditionnellement réalisée par des bactéries appartenant aux genres Lactobacillus, Lactococcus, Streptococcus, Bacillus et Enterococcus.
Pour les applications récentes de l’acide 2-hydroxypropanoïque en tant qu’intermédiaire chimique vert, par exemple pour le PLA, le coût de production via le procédé traditionnel est trop élevé.
En conséquence, une souche de production d'acide 2-hydroxypropanoïque industriel doit répondre aux critères suivants : production de > 100 gl−1 d'acide 2-hydroxypropanoïque à des rendements proches de la théorie (0,9 g d'acide 2-hydroxypropanoïque par gramme de dextrose), pureté chirale élevée. d'acide 2-hydroxypropanoïque produit (> 99 %) avec des taux, des supports et des coûts de récupération capables d'atteindre les objectifs de coûts ci-dessus.
La réduction de ce coût de production offre le potentiel d’élargir le marché de l’acide 2-hydroxypropanoïque et des dérivés verts de l’acide 2-hydroxypropanoïque.
Les principaux coûts associés à la fermentation sont les nutriments et les sucres nécessaires à la croissance cellulaire et à la production d'acide 2-hydroxypropanoïque, ainsi que le processus de récupération et de purification en aval.
En plus d'une source de sucre, les fermentations lactiques bactériennes traditionnelles nécessitent généralement une source d'azote organique (telle qu'un extrait de levure ou une liqueur de maïs) ainsi qu'une supplémentation en vitamines B.
De plus, ces fermentations nécessitent que le pH soit maintenu entre 5 et 7, bien au-dessus du pKa de l'acide 2-hydroxypropanoïque.
Le maintien du pH dans cette plage nécessite la neutralisation de l'acide 2-hydroxypropanoïque pendant la fermentation, suivie d'étapes coûteuses en aval ou d'une acidulation pour régénérer l'acide 2-hydroxypropanoïque libre.
Cela augmente considérablement le coût de la fermentation.
En 2008, Cargill a mis en œuvre une technologie de fermentation inédite impliquant une levure génétiquement modifiée capable de produire de l'acide 2-hydroxypropanoïque à des taux, des titres et des rendements industriellement pertinents à des valeurs de pH ≤ 3,0, ce qui est bien inférieur au pKa de 2-. Acide hydroxypropanoïque.
Le processus de fermentation à faible pH entraîne une amélioration de la qualité des produits et du traitement en aval, une réduction de l'utilisation de produits chimiques et des coûts des nutriments, ainsi qu'une réduction de 35 % des émissions de GES associées à la production d'acide 2-hydroxypropanoïque par fermentation.
De plus, le risque de perte de produit dû aux attaques de bactériophages et à la contamination microbienne pouvant survenir dans le processus bactérien traditionnel est éliminé ou considérablement réduit grâce au processus de levure à faible pH.
Cette robustesse accrue du processus contribue à la réduction du coût global de production de l’acide 2-hydroxypropanoïque et a par la suite contribué à développer le marché de l’acide 2-hydroxypropanoïque et des dérivés de l’acide 2-hydroxypropanoïque.
Les progrès futurs dans le processus de levure à faible pH devraient réduire encore davantage le coût de production de l’acide 2-hydroxypropanoïque en réduisant le coût de la source de carbone fermentée en acide 2-hydroxypropanoïque.
Pour y parvenir, les levures à faible pH doivent être développées davantage pour fermenter efficacement des sources de carbone à faible coût afin de libérer l'acide 2-hydroxypropanoïque.
L'acide 2-hydroxypropanoïque a été estimé par analyse du cycle de vie que grâce à l'utilisation de matières premières cellulosiques dérivées de la biomasse et à l'utilisation de l'énergie éolienne pour produire de l'acide 2-hydroxypropanoïque et du PLA, les émissions globales de GES pourraient être calculées comme un résultat net négatif.
Applications de l’acide 2-hydroxypropanoïque :
Applications pharmaceutiques et cosmétiques :
L'acide 2-hydroxypropanoïque est également utilisé dans la technologie pharmaceutique pour produire des lactates hydrosolubles à partir d'ingrédients actifs autrement insolubles.
L'acide 2-hydroxypropanoïque trouve également une utilisation dans les préparations topiques et les cosmétiques pour ajuster l'acidité et pour les propriétés désinfectantes et kératolytiques de l'acide 2-hydroxypropanoïque.
Nourriture:
L'acide 2-hydroxypropanoïque se trouve principalement dans les produits laitiers fermentés, tels que le koumiss, le laban, le yaourt, le kéfir et certains fromages cottage.
La caséine du lait fermenté est coagulée (caillée) par l'acide 2-hydroxypropanoïque.
L'acide 2-hydroxypropanoïque est également responsable de la saveur aigre du pain au levain.
Dans les listes d'informations nutritionnelles, l'acide 2-hydroxypropanoïque peut être inclus sous le terme « glucides » (ou « glucides par différence »), car cela inclut souvent tout autre chose que l'eau, les protéines, les graisses, les cendres et l'éthanol.
Si tel est le cas, l'énergie alimentaire calculée peut utiliser la norme de 4 kilocalories (17 kJ) par gramme, souvent utilisée pour tous les glucides.
Mais dans certains cas, l’acide 2-hydroxypropanoïque est ignoré dans le calcul.
La densité énergétique de l'acide 2-hydroxypropanoïque est de 362 kilocalories (1 510 kJ) pour 100 g.
Certaines bières (bière aigre) contiennent volontairement de l'acide 2-hydroxypropanoïque, l'un de ces types étant les lambics belges.
Le plus souvent, celle-ci est produite naturellement par diverses souches de bactéries.
Ces bactéries fermentent les sucres en acides, contrairement aux levures qui fermentent les sucres en éthanol.
Après refroidissement du moût, la levure et les bactéries peuvent « tomber » dans les fermenteurs ouverts.
Les brasseurs de styles de bière plus courants veilleraient à ce qu’aucune bactérie de ce type ne puisse pénétrer dans le fermenteur.
Parmi les autres styles de bière aigre, citons la Berliner weisse, la Flandre rouge et la Wild Ale américaine.
En vinification, un processus bactérien, naturel ou contrôlé, est souvent utilisé pour convertir l'acide malique naturellement présent en acide 2-hydroxypropanoïque, pour réduire le piquant et pour d'autres raisons liées à la saveur.
Cette fermentation malolactique est réalisée par des bactéries acides 2-Hydroxypropanoïque.
Bien qu'on ne le trouve normalement pas en quantités significatives dans les fruits, l'acide 2-hydroxypropanoïque est le principal acide organique du fruit de l'akebia, représentant 2,12 % du jus.
En tant qu'additif alimentaire, l'acide 2-hydroxypropanoïque est approuvé pour une utilisation dans l'UE, aux États-Unis, en Australie et en Nouvelle-Zélande ; L'acide 2-hydroxypropanoïque est répertorié sous le numéro SIN 270 de l'acide 2-hydroxypropanoïque ou sous le numéro E E270.
L'acide 2-hydroxypropanoïque est utilisé comme conservateur alimentaire, agent de salaison et agent aromatisant.
L'acide 2-hydroxypropanoïque est un ingrédient des aliments transformés et est utilisé comme décontaminant lors de la transformation de la viande.
L'acide 2-hydroxypropanoïque est produit commercialement par fermentation de glucides tels que le glucose, le saccharose ou le lactose, ou par synthèse chimique.
Les sources de glucides comprennent le maïs, les betteraves et le sucre de canne.
Falsification:
L'acide 2-hydroxypropanoïque a toujours été utilisé pour faciliter l'effacement des encres des papiers officiels devant être modifiés lors de la contrefaçon.
Produits de nettoyage:
L'acide 2-hydroxypropanoïque est utilisé dans certains nettoyants liquides comme agent détartrant pour éliminer les dépôts d'eau dure tels que le carbonate de calcium, formant ainsi le lactate, le lactate de calcium.
En raison de l'acidité élevée de l'acide 2-hydroxypropanoïque, ces dépôts sont éliminés très rapidement, en particulier lorsqu'on utilise de l'eau bouillante, comme dans les bouilloires.
L'acide 2-hydroxypropanoïque gagne également en popularité dans les détergents à vaisselle antibactériens et les savons pour les mains remplaçant le Triclosan.
Utilisations de l’acide 2-hydroxypropanoïque :
L'acide 2-hydroxypropanoïque est utilisé comme solvant et acidulant dans la production d'aliments, de médicaments et de colorants.
L'acide 2-hydroxypropanoïque est également utilisé comme mordant dans l'impression d'articles en laine, comme flux de soudure, comme agent épilant et comme catalyseur pour les résines phénoliques.
L'acide 2-hydroxypropanoïque est également utilisé dans le tannage du cuir, l'acidification des puits de pétrole et comme régulateur de croissance des plantes.
L’utilisation de l’acide 2-hydroxypropanoïque qui connaît la croissance la plus rapide est l’utilisation de l’acide 2-hydroxypropanoïque comme monomère pour la production d’acide poly2-hydroxypropanoïque ou de polylactide (PLA).
Les applications du PLA incluent les conteneurs pour les industries alimentaires et des boissons, les films et conteneurs rigides pour l'emballage et les articles de service (tasses, assiettes, ustensiles).
Le polymère PLA peut également être transformé en fibres et utilisé dans les vêtements, les fibres (oreillers, couettes), les tapis et les applications non tissées telles que les lingettes.
L'acide 2-hydroxypropanoïque est utilisé dans le placage de métaux, les cosmétiques et l'industrie du textile et du cuir.
L'acide 2-hydroxypropanoïque est utilisé dans les bains de teinture, comme mordant dans l'impression d'articles en laine, comme solvant pour les colorants insolubles dans l'eau (induline soluble dans l'alcool, nigrosine, bleu spiritueux).
L'acide 2-hydroxypropanoïque est utilisé pour réduire les chromates dans la laine mordante.
L'acide 2-hydroxypropanoïque est utilisé dans la fabrication de fromages et de confiseries.
L'acide 2-hydroxypropanoïque est utilisé dans les préparations lactées pour bébés ; acidulant dans les boissons; pour aciduler les moûts en brasserie.
L’acide 2-hydroxypropanoïque est utilisé dans la préparation des injections de lactate de sodium.
L'acide 2-hydroxypropanoïque est utilisé dans les ingrédients des cosmétiques.
L’acide 2-hydroxypropanoïque est utilisé dans les gelées spermatocides.
L'acide 2-hydroxypropanoïque est utilisé pour éliminer Clostridium butyricum dans la fabrication de levure ; épiler, repulper et décalcifier les peaux.
L'acide 2-hydroxypropanoïque est utilisé comme solvant pour le formiate de cellulose.
L'acide 2-hydroxypropanoïque est utilisé dans le flux pour la soudure tendre.
L'acide 2-hydroxypropanoïque est utilisé dans la fabrication de lactates utilisés dans les produits alimentaires, en médecine et comme solvants.
L'acide 2-hydroxypropanoïque est utilisé comme plastifiant et catalyseur dans le moulage de résines phénolaldéhyde.
Acide 2-hydroxypropanoïque dans les aliments :
L'acide 2-hydroxypropanoïque est naturellement présent dans de nombreux aliments.
L'acide 2-hydroxypropanoïque est formé par fermentation naturelle dans des produits tels que le fromage, le yaourt, la sauce soja, le levain, les produits carnés et les légumes marinés.
L'acide 2-hydroxypropanoïque est également utilisé dans une large gamme d'applications alimentaires telles que les produits de boulangerie, les boissons, les produits carnés, la confiserie, les produits laitiers, les salades, les vinaigrettes, les plats cuisinés, etc.
L'acide 2-hydroxypropanoïque présent dans les produits alimentaires sert généralement soit de régulateur de pH, soit de conservateur.
L'acide 2-hydroxypropanoïque est également utilisé comme agent aromatisant.
Viande, volaille et poisson :
L'acide 2-hydroxypropanoïque peut être utilisé dans la viande, la volaille et le poisson sous forme de lactate de sodium ou de potassium pour prolonger la durée de conservation, contrôler les bactéries pathogènes (améliorer la sécurité alimentaire), rehausser et protéger la saveur de la viande, améliorer la capacité de rétention d'eau et réduire le sodium.
Breuvages:
En raison de son goût doux, l'acide 2-hydroxypropanoïque est utilisé comme régulateur d'acidité dans les boissons telles que les boissons gazeuses et les jus de fruits.
Légumes marinés :
L'acide 2-hydroxypropanoïque est efficace pour prévenir la détérioration des olives, cornichons, oignons perlés et autres légumes conservés en saumure.
Salades et vinaigrettes :
L'acide 2-hydroxypropanoïque peut également être utilisé comme conservateur dans les salades et les vinaigrettes, ce qui donne des produits au goût plus doux tout en maintenant la stabilité et la sécurité microbiennes.
Confiserie:
La formulation de bonbons durs, de gommes aux fruits et d'autres produits de confiserie avec de l'acide 2-hydroxypropanoïque entraîne un goût acide doux, une qualité améliorée, un caractère collant réduit et une durée de conservation plus longue.
Laitier:
La présence naturelle d'acide 2-hydroxypropanoïque dans les produits laitiers, combinée à l'arôme laitier et à la bonne action antimicrobienne de l'acide 2-hydroxypropanoïque, fait de l'acide 2-hydroxypropanoïque un excellent agent d'acidification pour de nombreux produits laitiers.
Produits de boulangerie :
L'acide 2-hydroxypropanoïque est un acide naturel du levain, qui donne au pain une saveur caractéristique de l'acide 2-hydroxypropanoïque, et donc l'acide 2-hydroxypropanoïque peut être utilisé pour l'acidification directe dans la production de levain.
Saveurs salées :
L'acide 2-hydroxypropanoïque est utilisé pour rehausser une large gamme de saveurs salées.
L'acide 2-hydroxypropanoïque, présent naturellement dans la viande et les produits laitiers, fait de l'acide 2-hydroxypropanoïque un moyen attrayant d'améliorer les saveurs salées.
Pharmaceutique:
Les principales fonctions pour les applications pharmaceutiques sont : la régulation du pH, la séquestration des métaux, l'intermédiaire chiral et en tant que constituant naturel du corps dans les produits pharmaceutiques.
Biomatériaux :
L'acide 2-hydroxypropanoïque est un composant précieux dans les biomatériaux tels que les vis résorbables, les sutures et les dispositifs médicaux.
Détergents :
L'acide 2-hydroxypropanoïque est bien connu pour ses propriétés détartrantes et est largement utilisé dans les produits de nettoyage ménagers.
De plus, l’acide 2-hydroxypropanoïque est utilisé comme agent antibactérien naturel dans les produits désinfectants.
Technique:
L'acide 2-hydroxypropanoïque est utilisé dans une grande variété de procédés industriels où l'acidité est requise et où les propriétés de l'acide 2-hydroxypropanoïque offrent des avantages spécifiques.
Citons par exemple la fabrication de produits en cuir et textiles et de disques informatiques, ainsi que le revêtement automobile.
L'alimentation animale:
L'acide 2-hydroxypropanoïque est un additif couramment utilisé dans l'alimentation animale.
L'acide 2-hydroxypropanoïque a des propriétés bénéfiques pour la santé, améliorant ainsi les performances des animaux de ferme.
L’acide 2-hydroxypropanoïque peut être utilisé comme additif dans les aliments et/ou l’eau potable.
Acide 2-hydroxypropanoïque dans les plastiques biodégradables
L’acide 2-hydroxypropanoïque est le principal élément constitutif de l’acide poly 2-hydroxypropanoïque (PLA).
Le PLA est un polymère biosourcé et biodégradable qui peut être utilisé pour produire des plastiques renouvelables et compostables.
Utilisations industrielles :
Produits chimiques agricoles (non pesticides)
Intermédiaire
Inconnu ou raisonnablement vérifiable
Agents de placage et agents de traitement de surface
Régulateurs de processus
Auxiliaires technologiques, non répertoriés ailleurs
Utilisations par les consommateurs :
Produits chimiques agricoles (non pesticides)
Intermédiaire
Conservateur
Auxiliaires technologiques, non répertoriés ailleurs
Processus industriels avec risque d’exposition :
Production et raffinage du pétrole
Soudure
Agriculture (pesticides)
Tannage et traitement du cuir
Habillage et teinture de la fourrure
Textiles (impression, teinture ou finition)
Biologie de l'acide 2-hydroxypropanoïque :
L'acide l-2-hydroxypropanoïque est le principal agoniste endogène du récepteur 1 de l'acide hydroxycarboxylique (HCA1), un récepteur couplé aux protéines G couplé à Gi/o (GPCR).
Exercice et lactation :
Lors d'exercices de puissance tels que le sprint, lorsque le taux de demande d'énergie est élevé, le glucose est décomposé et oxydé en pyruvate, et le lactate est alors produit à partir du pyruvate plus rapidement que le corps ne peut le traiter, provoquant une augmentation des concentrations de lactate.
La production de lactate est bénéfique pour la régénération du NAD+ (le pyruvate est réduit en lactate tandis que le NADH est oxydé en NAD+), qui est utilisé dans l'oxydation du glycéraldéhyde 3-phosphate lors de la production de pyruvate à partir du glucose, ce qui garantit le maintien et la production d'énergie. l'exercice peut continuer.
Lors d’un exercice intense, la chaîne respiratoire ne peut pas suivre la quantité d’ions hydrogène qui s’unissent pour former le NADH et ne peut pas régénérer le NAD+ assez rapidement.
Le lactate obtenu peut être utilisé de deux manières :
Oxydation en pyruvate par des cellules musculaires, cardiaques et cérébrales bien oxygénées
Le pyruvate est ensuite directement utilisé pour alimenter le cycle de Krebs
Conversion en glucose via la gluconéogenèse dans le foie et remise en circulation ; voir le cycle de Cori
Si les concentrations de glucose dans le sang sont élevées, le glucose peut être utilisé pour reconstituer les réserves de glycogène du foie.
Cependant, le lactate se forme continuellement, même au repos et lors d'un exercice modéré.
Certaines causes en sont le métabolisme des globules rouges dépourvus de mitochondries et les limitations résultant de l'activité enzymatique qui se produit dans les fibres musculaires ayant une capacité glycolytique élevée.
En 2004, Robergs et coll. a soutenu que l'acidose 2-hydroxypropanoïque pendant l'exercice est une « construction » ou un mythe, soulignant qu'une partie du H+ provient de l'hydrolyse de l'ATP (ATP4− + H2O → ADP3− + HPO2− 4 + H+), et que la réduction du pyruvate en lactate ( pyruvate− + NADH + H+ → lactate− + NAD+) consomme en réalité du H+.
Lindinger et coll. ont rétorqué qu'ils avaient ignoré les facteurs responsables de l'augmentation de [H+].
Après tout, la production de lactate− à partir d’une molécule neutre doit augmenter [H+] pour maintenir l’électroneutralité.
L'idée de l'article de Robergs, cependant, était que le lactate− est produit à partir du pyruvate−, qui a la même charge.
L'acide 2-hydroxypropanoïque est une production de pyruvate à partir de glucose neutre qui génère du H+ :
C6H12O6 + 2 NAD+ + 2 ADP3− + 2 HPO2−4 → 2 CH3COCO−2 + 2 H+ + 2 NADH + 2 ATP4− + 2 H2O
La production ultérieure de lactate− absorbe ces protons :
2 CH3COCO−2 + 2 H+ + 2 NADH → 2 CH3CH(OH)CO−2 + 2 NAD+
Dans l'ensemble:
C6H12O6 + 2 NAD+ + 2 ADP3− + 2 HPO2−4 → 2 CH3COCO−2 + 2 H+ + 2 NADH + 2 ATP4− + 2 H2O→ 2 CH3CH(OH)CO−2 + 2 NAD+ + 2 ATP4− + 2 H2O
Bien que la réaction glucose → 2 lactate− + 2 H+ libère deux H+ vus sur l'acide 2-hydroxypropanoïque lui-même, les H+ sont absorbés dans la production d'ATP.
En revanche, l'acidité absorbée est libérée lors de l'hydrolyse ultérieure de l'ATP : ATP4− + H2O → ADP3− + HPO2−4 + H+.
Ainsi, une fois l’utilisation de l’ATP incluse, la réaction globale est C6H12O6 → 2 CH3COCO−2 + 2 H+.
La génération de CO2 lors de la respiration provoque également une augmentation de [H+].
Métabolisme de l'acide 2-hydroxypropanoïque :
Bien que le glucose soit généralement considéré comme la principale source d'énergie des tissus vivants, certaines indications suggèrent que l'acide 2-hydroxypropanoïque est du lactate, et non du glucose, qui est préférentiellement métabolisé par les neurones du cerveau de plusieurs espèces de mammifères (les plus notables étant les souris). , rats et humains).
Selon l’hypothèse de la navette lactate, les cellules gliales sont responsables de la transformation du glucose en lactate et de l’apport de lactate aux neurones.
En raison de cette activité métabolique locale des cellules gliales, la composition du liquide extracellulaire entourant immédiatement les neurones diffère fortement de celle du sang ou du liquide céphalo-rachidien, étant beaucoup plus riche en lactate, comme cela a été constaté dans les études de microdialyse.
Certaines preuves suggèrent que le lactate est important aux premiers stades du développement pour le métabolisme cérébral chez les sujets prénatals et postnatals précoces, le lactate à ces stades ayant des concentrations plus élevées dans les liquides corporels et étant utilisé par le cerveau de préférence par rapport au glucose.
L'acide 2-hydroxypropanoïque a également émis l'hypothèse que le lactate pourrait exercer une forte action sur les réseaux GABAergiques dans le cerveau en développement, les rendant plus inhibiteurs que l'acide 2-hydroxypropanoïque ne l'avait supposé auparavant, agissant soit par un meilleur soutien des métabolites, soit par des modifications des niveaux de pH intracellulaire de base. , ou les deux.
Des études sur des tranches de cerveau de souris montrent que le β-hydroxybutyrate, le lactate et le pyruvate agissent comme substrats énergétiques oxydatifs, provoquant une augmentation de la phase d'oxydation du NAD(P)H, que le glucose était insuffisant comme vecteur d'énergie lors d'une activité synaptique intense et, enfin. , que le lactate peut être un substrat énergétique efficace capable de maintenir et d'améliorer le métabolisme énergétique aérobie cérébral in vitro.
L'étude "fournit de nouvelles données sur les transitoires de fluorescence biphasique du NAD(P)H, une réponse physiologique importante à l'activation neuronale qui a été reproduite dans de nombreuses études et qui proviendrait principalement de changements de concentration induits par l'activité dans les pools cellulaires de NADH".
Le lactate peut également constituer une source d’énergie importante pour d’autres organes, notamment le cœur et le foie.
Pendant l'activité physique, jusqu'à 60 % du taux de renouvellement énergétique du muscle cardiaque provient de l'oxydation du lactate.
Prise de sang :
Des analyses de sang pour le lactate sont effectuées pour déterminer l’état de l’homéostasie acido-basique dans le corps.
Le prélèvement sanguin à cet effet est souvent artériel (même si l'acide 2-hydroxypropanoïque est plus difficile que la ponction veineuse), car les taux de lactate diffèrent considérablement entre artériel et veineux, et le niveau artériel est plus représentatif à cet effet.
Précurseur de polymère :
Deux molécules d'acide 2-hydroxypropanoïque peuvent être déshydratées en lactone lactide.
En présence de catalyseurs, le lactide polymérise en polylactide atactique ou syndiotactique (PLA), qui sont des polyesters biodégradables.
Le PLA est un exemple de plastique qui n’est pas issu de la pétrochimie.
Production d'acide 2-hydroxypropanoïque :
L'acide 2-hydroxypropanoïque est produit industriellement par fermentation bactérienne de glucides ou par synthèse chimique à partir d'acétaldéhyde.
En 2009, l'acide 2-hydroxypropanoïque était produit principalement (70 à 90 %) par fermentation.
La production d'acide 2-hydroxypropanoïque racémique constitué d'un mélange 1:1 de stéréoisomères d et l, ou de mélanges contenant jusqu'à 99,9 % d'acide l-2-hydroxypropanoïque, est possible par fermentation microbienne.
La production à l’échelle industrielle d’acide d-2-hydroxypropanoïque par fermentation est possible, mais beaucoup plus difficile.
Comme matière première pour la production industrielle d’acide 2-hydroxypropanoïque, presque toutes les sources de glucides contenant des sucres en C5 et C6 peuvent être utilisées.
Le saccharose pur, le glucose provenant de l'amidon, le sucre brut et le jus de betterave sont fréquemment utilisés.
Les bactéries productrices d'acide 2-hydroxypropanoïque peuvent être divisées en deux classes : les bactéries homofermentaires comme Lactobacillus casei et Lactococcus lactis, produisant deux moles de lactate à partir d'une mole de glucose, et les espèces hétérofermentaires produisant une mole de lactate à partir d'une mole de glucose ainsi que du carbone. dioxyde et acide acétique/éthanol.
L'acide 2-hydroxypropanoïque a été le premier acide organique produit avec des microbes, réalisé en 1880.
Au XXIe siècle, les procédés de synthèse pour la production d'acide 2-hydroxypropanoïque (par exemple à partir du lactonitrile) sont compétitifs aux mêmes coûts que les procédés biologiques ; La production d’acide 2-hydroxypropanoïque est répartie à peu près également entre les deux procédés.
L'approvisionnement majeur en acide 2-hydroxypropanoïque en Europe est produit par fermentation à l'aide de souches de L. bulgaricus lorsque le lactosérum est utilisé comme substrat, et d'autres lactobacilles lorsque différents substrats sont utilisés.
Selon la Food and Drug Administrating (FDA) des États-Unis, l'acide 2-hydroxypropanoïque est un additif généralement reconnu comme sûr (GRAS) pour des utilisations diverses ou générales.
L'acide 2-hydroxypropanoïque était l'un des premiers acides organiques utilisés dans les aliments.
L'acide 2-hydroxypropanoïque est utilisé par l'industrie alimentaire de plusieurs manières :
L'acide 2-hydroxypropanoïque est utilisé dans l'emballage des olives espagnoles, où l'acide 2-hydroxypropanoïque inhibe la détérioration et la poursuite de la fermentation.
L'acide 2-hydroxypropanoïque aide à la stabilisation de la poudre d'œufs séchés.
L'acide 2-hydroxypropanoïque améliore le goût de certains cornichons lorsqu'il est ajouté au vinaigre.
L'acide 2-hydroxypropanoïque est utilisé pour acidifier le jus de raisin (moût) lors de la vinification.
Dans les confiseries glacées, l'acide 2-hydroxypropanoïque confère un goût acidulé et laiteux et ne masque pas les autres arômes naturels.
L'acide 2-hydroxypropanoïque est également utilisé dans la production des émulsifiants lactylates de stéaroyle de calcium et de sodium, qui fonctionnent comme conditionneurs de pâte.
Les sels de sodium et de potassium de l'acide 2-hydroxypropanoïque ont des propriétés antimicrobiennes significatives, notamment dans les produits carnés contre la production de toxines par Clostridium botulinum et contre Listeria monocytogenes dans le poulet, le bœuf et le saumon fumé.
L'acide 2-hydroxypropanoïque est présent dans de nombreux aliments à la fois naturellement et en tant que produit de fermentation in situ, comme dans la choucroute, le yaourt et de nombreux autres aliments fermentés.
L'acide 2-hydroxypropanoïque est également un intermédiaire métabolique principal dans la plupart des organismes vivants.
Les lactates de sodium et de potassium sont produits commercialement par neutralisation de l'acide 2-hydroxypropanoïque naturel ou synthétique (FDA 184.1768, 1639).
L'acide 2-hydroxypropanoïque à utiliser comme additif alimentaire peut être obtenu soit par fermentation de glucides, soit par une procédure chimique impliquant la formation de lactonitrile à partir d'acétaldéhyde et de cyanure d'hydrogène et une hydrolyse ultérieure (FDA 184.1061).
Les procédures microbiologiques et chimiques pour obtenir l'acide 2-hydroxypropanoïque sont très compétitives, avec des coûts de production similaires.
Une méthode de biosynthèse couramment utilisée commence par le glucose et produit du pyruvate, qui peut être converti en isomères l (+) et d (−) à l'aide d'une lactate déshydrogénase stéréospécifique ; cependant, seule la forme l(+) est produite commercialement.
Le mélange racémique est toujours obtenu par synthèse chimique.
L'acide 2-hydroxypropanoïque synthétique est exempt des contaminants normalement présents dans le produit obtenu par fermentation, et l'acide 2-hydroxypropanoïque est donc complètement incolore et probablement plus stable.
L'acide 2-hydroxypropanoïque et ses sels sont hautement hygroscopiques et sont donc généralement manipulés dans des solutions concentrées (60 à 80 % en poids) plutôt que sous forme solide.
Ces solutions sont incolores et inodores et ont un léger goût salin
Production chimique :
L'acide 2-hydroxypropanoïque racémique est synthétisé industriellement en faisant réagir de l'acétaldéhyde avec du cyanure d'hydrogène et en hydrolysant le lactonitrile résultant.
Lorsque l'hydrolyse est effectuée par l'acide chlorhydrique, du chlorure d'ammonium se forme comme sous-produit ; la société japonaise Musashino est l'un des derniers grands fabricants d'acide 2-hydroxypropanoïque par cette voie.
La synthèse d'acides 2-hydroxypropanoïques racémiques et énantiopurs est également possible à partir d'autres matières premières (acétate de vinyle, glycérol, etc.) par application de procédures catalytiques.
Informations générales sur la fabrication de l'acide 2-hydroxypropanoïque :
Secteurs de transformation de l'industrie :
Agriculture, foresterie, pêche et chasse
Toutes les autres fabrications de produits chimiques organiques de base
Fabrication de tous les autres produits et préparations chimiques
Fabrication d'aliments, de boissons et de produits du tabac
Activités de forage, d’extraction et de soutien du pétrole et du gaz
Fabrication de peintures et de revêtements
Fabrication de pesticides, d'engrais et d'autres produits chimiques agricoles
Fabrication de matières plastiques et de résines
Fabrication de produits en plastique
Histoire de l’acide 2-hydroxypropanoïque :
Le chimiste suédois Carl Wilhelm Scheele fut le premier à isoler l'acide 2-hydroxypropanoïque en 1780 à partir du lait aigre.
Le nom reflète la forme lacto-combinante dérivée du mot latin lac, qui signifie lait.
En 1808, Jöns Jacob Berzelius découvrit que l'acide 2-hydroxypropanoïque (en fait le L-lactate) était également produit dans les muscles lors d'un effort.
La structure des acides 2-hydroxypropanoïques a été établie par Johannes Wislicenus en 1873.
En 1856, le rôle des Lactobacilles dans la synthèse de l'acide 2-hydroxypropanoïque est découvert par Louis Pasteur.
Cette voie a été utilisée commercialement par la pharmacie allemande Boehringer Ingelheim en 1895.
En 2006, la production mondiale d'acide 2-hydroxypropanoïque a atteint 275 000 tonnes avec une croissance annuelle moyenne de 10 %.
Identifiants de l'acide 2-hydroxypropanoïque :
Numero CAS:
50-21-5
79-33-4 (l)
10326-41-7(d)
3DMet : B01180
Référence Beilstein : 1720251
ChEBI : CHEBI :422
ChEMBL : ChEMBL330546
ChemSpider : 96860
Carte Info ECHA : 100.000.017
Numéro CE : 200-018-0
Numéro E : E270 (conservateurs)
Référence Gmelin : 362717
IUPHAR/BPS : 2932
KEGG : C00186
Numéro client PubChem : 612
Numéro RTECS : OD2800000
UNII :
3B8D35Y7S4
F9S9FFU82N (g)
3Q6M5SET7W (d)
Numéro ONU : 3265
Tableau de bord CompTox (EPA) : DTXSID7023192
InChI : InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)/t2-/m0/s1
Clé : JVTAAEKCZFNVCJ-REOHCLBHSA-N
SOURIRES : CC(O)C(=O)O
Propriétés de l'acide 2-hydroxypropanoïque :
Formule chimique : C3H6O3
Masse molaire : 90,078 g·mol−1
Point de fusion : 18 °C (64 °F ; 291 K)
Point d'ébullition : 122 °C (252 °F ; 395 K) à 15 mmHg
Solubilité dans l'eau : Miscible
Acidité (pKa) : 3,86, 15,1
Point d'ébullition : 122 °C (20 hPa)
Densité : 1,21 g/cm3 (20 °C)
Point de fusion : 18 °C
Valeur pH : 2,8 (10 g/l, H₂O, 20 °C)
Pression de vapeur : 0,1 hPa (25 °C)
Poids moléculaire : 90,08 g/mol
XLogP3 : -0,7
Nombre de donneurs de liaisons hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 3
Nombre de liaisons rotatives : 1
Masse exacte : 90,031694049 g/mol
Masse monoisotopique : 90,031694049 g/mol
Surface polaire topologique : 57,5 Ų
Nombre d'atomes lourds : 6
Complexité : 59,1
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 1
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Spécifications de l’acide 2-hydroxypropanoïque :
Dosage (alcalimétrique) : 88,0 - 92,0 %
Dosage (pureté stéréochimique de l'acide (S)-lactique) : ≥ 95,0 %
Identité (spectre IR) : réussit le test
Identité (pH) : réussit le test
Identité (densité) : réussit le test
Identité (Lactat) : réussit le test
Identité (test) : réussit le test
Aspect : liquide clair et huileux, de couleur pas plus intense que la solution de référence Y₆
Substances insolubles dans l'éther : réussit le test
Acides citrique, oxalique et phosphorique : réussit le test
Densité (d 20/20) : 1,20 - 1,21
Chlorure (Cl) : ≤ 0,2 %
Sulfate (SO₄) : ≤ 200 ppm
As (Arsenic) : ≤ 3 ppm
Ca (Calcium) : ≤ 200 ppm
Fe (Fer) : ≤ 10 ppm
Hg (Mercure) : ≤ 1 ppm
Pb (plomb) : ≤ 2 ppm
Éthanol : ≤ 5000 ppm
Acide acétique : ≤ 5000 ppm
Méthanol : ≤ 50 ppm
Autres solvants résiduels (ICH Q3C) : exclus par procédé de fabrication
Sucres et autres substances réductrices : réussit le test
Cendres sulfatées (600 °C) : ≤ 0,10 %
Nombre total de microbes aérobies (TAMC) : ≤ 10²
Nombre total combiné levures/moisissures (TYMC) : ≤ 10²
Endotoxines bactériennes : ≤ 5 UI/g
Thermochimie de l'acide 2-hydroxypropanoïque :
Enthalpie standard de combustion (ΔcH⦵298) : 1361,9 kJ/mol, 325,5 kcal/mol, 15,1 kJ/g, 3,61 kcal/g
Pharmacologie de l'acide 2-hydroxypropanoïque :
Code ATC : G01AD01 (OMS) QP53AG02 (OMS)
Composés apparentés de l’acide 2-hydroxypropanoïque :
1-Propanol
2-Propanol
Propionaldéhyde
Acroléine
Lactate de sodium
Lactate d'éthyle
Autres anions :
Lactate
Acides carboxyliques associés :
Acide acétique
Acide glycolique
L'acide propionique
Acide 3-hydroxypropanoïque
Acide malonique
Acide butyrique
Acide hydroxybutyrique
Quelques exemples de lactates (sels ou esters de l'acide lactique) sont :
Lactate d'ammonium (NH4C3H5O3, CAS RN : 515-98-0) : liquide sirupeux clair à jaune utilisé dans la galvanoplastie, dans la finition du cuir et comme humectant pour les aliments, les produits pharmaceutiques et les cosmétiques.
Lactate de butyle (CH3CHOHCOOC4H9, CAS RN : 138-22-7) : un liquide clair : non toxique, miscible avec de nombreux solvants ; utilisé comme solvant pour les vernis, les laques, les résines et les gommes, utilisé dans la fabrication de peintures, d'encres, de liquides de nettoyage à sec, d'arômes et comme intermédiaire chimique.
Lactate de calcium pentahydraté [Ca(C3H5O3)2·5H2O, CAS RN : 814-80-2] : cristaux blancs; soluble dans l'eau; utilisé comme source de calcium; administré par voie orale dans le traitement d'une carence en calcium; comme coagulant sanguin.
Lactate d'éthyle (CH3CHOHCOOC2H5, CAS RN : 97-64-3) : liquide clair avec une légère odeur ; point d'ébullition 154 °C ; miscible avec les alcools, les cétones, les esters et les hydrocarbures ainsi qu'avec l'eau ; utilisé dans les préparations pharmaceutiques, additif alimentaire, comme arôme (description de l'odeur : beurre doux, noix de coco, fruité, laitier crémeux, caramel au beurre) et comme solvant pour les composés cellulosiques tels que la nitrocellulose, l'acétate de cellulose et les éthers de cellulose.
Lactate de magnésium trihydraté [Mg(C3H5O3)2·3H2O, CAS RN : 18917-93-6 ] : cristaux blancs au goût amer ; soluble dans l'eau, légèrement soluble dans l'alcool ; utilisé en médecine et comme reconstituant d’électrolytes.
Lactate de manganèse trihydraté [Mn(C3H5O3)2·3H2O] : cristaux rouge pâle ; insoluble dans l'eau et l'alcool; utilisé en médecine.
Lactate mercurique [Hg(C3H5O3)2] : poudre blanche toxique qui se décompose lorsqu'elle est chauffée ; soluble dans l'eau; utilisé en médecine.
Lactate de méthyle (CH3CHCHCOOCH3) : liquide clair avec une légère odeur ; point d'ébullition 145°C ; miscible avec les alcools, les cétones, les esters et les hydrocarbures ainsi qu'avec l'eau ; utilisé dans les préparations pharmaceutiques, les additifs alimentaires, comme arôme et comme solvant pour les composés cellulosiques tels que la nitrocellulose, l'acétate de cellulose et les éthers de cellulose.
Lactate de sodium (CH3CHOHCOONa, CAS RN : 72-17-3) liquide sirupeux hygroscopique clair à jaune ; soluble dans l'eau; point de fusion 17 °C ; utilisé en médecine, comme antigel, agent hygroscopique et comme inhibiteur de corrosion.
Lactate de zinc (Zn(C3H5O3)2·2H2O, CAS RN : 16039-53-5) : cristaux blancs ; utilisé comme additif dans le dentifrice et les aliments ; préparation de médicaments.
Noms de l’acide 2-hydroxypropanoïque :
Nom IUPAC préféré :
Acide 2-hydroxypropanoïque
Autres noms:
Acide lactique
Acide du lait