1-9 A-D E-G H-M N-P Q-S T-Z

HOSTAPUR SAS

Hostapır, hastapır, hustapır, hostapur
Hostapur Sas, temizlik ürünleri, kimyasal ve teknik işlemler için kullanılan güçlü bir aniyonik surfaktanttır. Sekonder alkan sülfonatın sodyum tuzundan oluşur.
 

Hostapur SAS 60, HostapUR SAS 30, Hostapur SAS 93, sekonder alkan sülfonat, alkan sülfonat, alkansülfonat, alkansulfonat, secondary alkane sufonate, SAS 60, SAS 30, SAS 93

Ataman Kimya alkan sülfonat, deterjan ve kozmetik olmak üzere, birçok temizleme ürünlerinde yüzey aktif olarak kullanılır. İyi bir temizleme ve köpük aktifine sahiptir. 

Alkan Sülfonate Ürün özellikleri
 Mükemmel deterjan / ıslatma maddesidir
 Mükemmel çözünürlük - elektrolit
uyumluluk - sertlik toleransı
 Enzim ve ağartıcı uyumlu
 LAS'tan üstün yumuşaklık profili
 LAS'a benzer köpük profili
 Viskoz sıvı / özel taşıma / depolama gereksinimleri
ürün durumu
 Stoklarımızda sürekli mevcuttur
- TSCA kayıtlı / DSL listelendi
 Biyolojik olarak kolayca parçalanabilir
 Avrupa'da devam eden üretim
 Uygulamalar - herhangi bir sıvı temizleme
ürün uygulamasında kullanılabilir.
 Diğer birçok potansiyel uygulama
Henüz keşfedilmemiş alanlar


İkincil ( Sekonder ) Alkan Sülfonat (SAS), parafin olarak da adlandırılan anyonik bir yüzey aktif maddedir.
İlk kez 1940 yılında sentezlenmiş ve yüzey aktif madde olarak kullanılmıştır.
1960'lardan beri SAS, piyasada kullanılan başlıca anyonik yüzey aktif maddelerden biridir. Bulaşık, çamaşır ve temizlik ürünlerinde başarıyla kullanılır.

İkincil alkan sülfonat (SAS) bir anyonik yüzey aktif maddedir ve halihazırda 1940 yılında n-parafinlerin sülfoksidasyonu ile üretilmiştir (Platz ve Schimmelschmidt, 1940). 
1960'larda sürfaktan olarak tanıtıldı. Suda çok iyi çözünürlük, yüksek ıslatma etkisi, belirgin köpürme gücü, mükemmel yağ ve kir dağıtma özellikleri, SAS'ı özellikle bulaşık
 yıkamada deterjanlarda önemli bir yüzey aktif madde bileşeni haline getirir.

Avrupa pazarındaki kimyasal yapı ve bileşim SAS, n-parafinlerin sülfoksidasyonu ile üretilen yakından ilişkili izomerlerin ve homologların spesifik ve oldukça sabit bir karışımıdır. SAS, bir
sülfonat grubu, n-parafin zinciri üzerinde dağılmış ve aşağıda gösterildiği gibi esas olarak ikincil C atomlarından birinde yer almaktadır (Clariant, 2000):
m + n = 11-14
Ortalama zincir uzunluğu: C15,9
Ortalama Mol ağırlığı 328 g / Mol

H3C (CH2) CHSO3Na(CH2 m)n CH3
Doğrusal alkil zinciri (doğrusallık>% 98) tipik olarak 14 ila 17 karbon birimine sahiptir.
328 ortalama molekül ağırlığına karşılık gelen ortalama 15,9 karbon atomu
Dalton. C-zinciri dağılımı Tablo 3.1.2'de verilmiştir.
Tablo 3.1.2: C-zinciri uzunluk dağılımı
Karbon zinciri Dağıtımı
<C13 <% 2
C13 - C15>% 45
C16 - C17 <% 55
> C17 <% 4
Birincil alkan sülfonatların içeriği <% 1'dir. UV ışığı ve su mevcudiyetinde sülfoksidasyon, iyi dengelenmiş uygulama özelliklerine olumlu bir şekilde katkıda bulunan yaklaşık% 90 mono- ve% 10 disülfonik asitlerin (Hauthal, 1995) bir karışımıyla sonuçlanır. Sülfoksidasyon için kullanılan parafin kesimi, optimum köpürme, ıslatma, emülsiyonlaştırma, yıkama ve temizleme performansı ile karakterize edilen bir ürün sağlar. Kimyasal
bileşim, yüksek ve düşük pH değerlerinde iyi çözünürlük, güçlü yüzey aktif madde özellikleri ve yüksek kimyasal stabilite garanti eder. Ticari SAS birçok kişiden oluşur
bileşenler (Hauthal, 1995). Mevcut risk değerlendirmesi bir kategori yaklaşımı benimser, yani SAS karışımının kaderini ve etkilerini yukarıda açıklandığı gibi dikkate alır.
her izomer ve homolog ayrı ayrı. Sonuç olarak, SAS özelliklerinin hesaplanan değerleri, yaklaşık 16 olan ortalama karbon zinciri uzunluğuna karşılık gelir.

Ticari ürünlerin tipik bileşimi ve görünümü tabloda verilmiştir.
3.1.3 (Clariant, 2000). Sülfoksidasyondan elde edilen SAS, mumsu bir tortu iken, SAS 60 ve SAS 30, SAS'ın sulu karışımlarıdır.



Ataman Chemicals SAS 60 Üretim Metodu
Temel olarak, ikincil alkan sülfonatlar (SAS) sülfoksidasyon ve sülfoklorlama yoluyla üretilebilir.
Sülfoklorlama ile üretilen alkan sülfonatlar (Reed, 1933), istenmeyen yan ürünler içerdikleri için esas olarak deterjan olmayan teknik amaçlar için kullanılır. Sülfoklorlama ile üretilen SAS, bu HERA risk değerlendirmesine dahil değildir.
Sülfoksidasyonla üretilen ikincil alkan sülfonatlar (Platz ve Schimmelschmidt, 1940) esas olarak ev ürünlerinde kullanılır ve düşük bir istenmeyen yan ürün içeriğine sahiptir. Ultraviyole ışık ile ışınlanırken su varlığında n-parafinlerin kükürt dioksit ve oksijen ile reaksiyona sokulmasıyla hazırlanırlar. İkincil
Sülfoksidasyondan elde edilen alkan sülfonatlar (SAS), yakından ilişkili izomerlerin ve ikincil alkan sülfonat sodyum tuzlarının homologlarının bir karışımıdır.
RH + 2 SO2 + O2 + H2O RSO3H + H2SO4
RSO3H + NaOH RSO3Na + H2O
N-parafinlerin endüstriyel sülfoksidasyonu, çok lambalı bir reaktörde gerçekleştirilen su varlığında bir foto-oksidasyondur. Bu işlem herhangi bir katalizör veya çözücü gerektirmez.
Reaksiyon karışımına gaz enjeksiyonu ile bir gaz halinde S02 ve O2 karışımı verilir.
SO2, O2 ve n-parafin karışımı, yüksek basınçlı cıva lambalarının ürettiği UV ışığına maruz kalır. Reaksiyon gazı sirküle edilir ve reaksiyon sıvısı, reaktörün tabanından çıkarılır. Alt katman olan ürün fazı ayrılır ve (tepkimeye girmemiş) parafin fazı olan üst katman soğutulur ve su ile doldurulur.
Reaksiyona girmemiş n-parafinler tekrar reaktöre geri gönderilir.
Ürün fazının düşük basınç altında yoğunlaştırılmasından, sülfürik asidin ayrılmasından ve konsantrenin sodyum hidroksit çözeltisi ile nötrleştirilmesinden sonra, kalan parafinler, süper ısıtılmış buhar ile buhar destilasyonuyla ham üründen çıkarılır. Buhar distilatı tekrar ayrılır ve parafinler geri döndürülür
reaksiyon karışımına. Kalan ürün eriyiği nihayet% 60 veya% 30 SAS içeriğine sahip ticari sulu SAS ürünleri elde etmek için suya dağıtılır


Batı Avrupa'daki toplam alkan sülfonat üretim kapasitesinin (sülfoklorlama ve sülfoksidasyon proseslerini içeren) 2001 yılında 81.000 ton / yıl olduğu tahmin edilmektedir (CESIO, 2003).
Batı Avrupa'da satışlar ve esir kullanımı 2001 yılında yaklaşık 76.000 ton / yıl'dır (CESIO, 2003). CESIO'ya (2003) göre, 2001 yılındaki 76.000 ton / yılın% 63'ü ev uygulamalarında (48.000 ton / yıl) kullanılmaktadır. Alkan sülfonatlar yoluyla üretilen
ev uygulamalarında sülfoklorlama kullanılmaz. Ev uygulamasına ek olarak, Endüstriyel ve Kurumsal kullanım için% 24 (18.000 ton / yıl) alkan sülfonat nihayetinde kanalizasyona bırakılır. Kalan% 13 (10.000 ton / yıl) alkan
teknik kullanımlara yönelik sülfonat (tekstil, deri, kağıt, polimerler, yapı maddeleri, boya, kaplama, mürekkepler, madencilik, metal işleme, petrol rafinerisi, tarım, gıda ve yem katkı maddeleri vb.) temelde tren dışı uygulamalardır. Bu HERA hedefli Risk Değerlendirmesi için ev kullanımı (HERA kapsamı) ve Endüstriyel ve Kurumsal kullanım -
birlikte 66.000 ton / yıl - nihayetinde kanalizasyona bırakılanlar hesaba katılır.
Ticari SAS'ın çoğu,% 60 veya% 30 aktif bileşen içeren sulu bir çözelti olarak satılmaktadır.

SAS 60

Özellikleri : Çevre ile dost; deterjanlar, kimyasal teknik ve kozmetik endüstriler için anyonik yüzey aktiflerdir.

- Çok iyi çözünürlük (kendiliğinden çözünür, iyi düşük sıcaklık özelliklerine sahiptir.)
- Yüksek ıslatma hareketi (iyi drenaj (süzülme) özellikleri ve bulaşıkların hızlı kuruması)                                                                                                                                                                                   
- Belirgin köpük gücü (kullanımda bitmiş ürünlerin yüksek verimi)
- Mükemmel yağ ve kir dağıtıcı hareket (en iyi deterjan, temizliyici ve yağ giderici etkili olarak tarif edilen bitmiş ürünlerin geliştirilmesi)
- Viskosite azaltıcı etki, (akabilir, yüksek konsantre deterjanlar ve düşük su içerikli temizleyiciler ve koruyucu ve solvent içermeyen temizleyiciler, taşıma ve paketleme maaliyetli 
formülasyonlar)
- Üstün enzim uyumluluğu (enzim kararlılığı üzerinde artı etki)
- Geniş bir pH aralığında kimyasal stabilite,
- Uzun depolama stabiliteli alkali temizleyici formülasyonu; -klor içerikli çok amaçlı temizleyiciler için üretilen; oksidize edici ajanlara karşı stabilite.
- Modern deterjan katkılarının aktivitesini arttırır. (Örneğin; kir giderici polimerler)
- Çok iyi elektrolit uyumluluğu (yüksek miktar içerikli hafif görevli deterjanların üretimi)                                                                                                                                                                                    
- İyi cilt uyumu (hafif görevli bulaşık yıkama sıvıları formülasyonları)
- Anyonik, non iyonik ve amfoterik yüzey aktfilerle uyum imkanı.
- Formülasyonda çok yönlülük,
- Kullanımda sinerjistik etkiler,
- Elektriksel olarak nötral tuzlar (katyonik yüzey aktiflerle) oluşturabilir.
- Maaliyet düşüklüğü (hidrotoplar olmadan yüksek konsantreli sıvı temizliyicilerin üretim imkanı)
- Hızlı biyolojik bozunma. (Çevreye zarasız)

SAS nin en önemli kullanımı : Bulaşık yıkama deterjanları (standart ve konsantre); çamaşır deterjanları (sıvı,toz,hamur,ön ıslatma deterjanları); saç ve vücut bakımı kozmetikleri 
(şampuanlar, duş jelleri, banyo köpüğü, sıvı sabunlar, diş macunları), endüstriyel temizleyiciler, otomotiv temizleyicileri; metal yağ.

Product Characteristics
 Excellent detergent/wetting agent
 Excellent solubility - electrolyte
compatibility - hardness tolerance
 Enzyme and bleach compatible
 Mildness profile superior to LAS
 Foam profile similar to LAS
 Viscous liquid/paste with special
handling/storage requirements
Product Status
 Commercially available
– TSCA registered / DSL listed
 Readily biodegradable
 On-going production in Europe
 Applications - any liquid cleaning
product application
 Many other potential application
areas yet to be explored


Secondary Alkane Sulfonate (SAS) is an anionic surfactant, also called paraffine
sulfonate. It was synthesized for the first time in 1940 and has been used as surfactant
since the 1960ies. SAS is one of the major anionic surfactants used in the market of
dishwashing, laundry and cleaning products. 



Human Health
The presence of SAS in many commonly used household detergents gives rise to a
variety of possible consumer contact scenarios including direct and indirect skin contact,
inhalation, and oral ingestion derived either from residues deposited on dishes, from
accidental product ingestion, or indirectly from drinking water.
The consumer aggregate exposure from direct and indirect skin contact as well as from
inhalation and from oral route in drinking water and dishware results in an estimated total
body burden of 3.87 µg/kg bw/day.
The toxicological data show that SAS was not genotoxic in vitro or in vivo, did not
induce tumors in rodents after two years daily dosing using both, the oral and dermal
route of exposure, and failed to induce either reproductive toxicity or developmental or
teratogenic effects. The critical adverse effects identified are of local nature mainly due to
the irritating properties of high concentrated SAS.
Comparison of the aggregate consumer exposure to SAS with a systemic NOEL of 180
mg/kg body weigh per day (assuming 90% absorption; adapted from Michael, 1968)
which is based on a chronic feeding study, results in an estimated Margin of Exposure
(MOE) of 46500. This is a very large Margin of Exposure, large enough to account for
the inherent uncertainty and variability of the hazard database and inter species and intra
species extrapolations (which are usually conventionally estimated at a factor of 100).
Neat SAS is an irritant to skin and eyes in rabbits. The irritation potential of aqueous
solutions of SAS depends on concentration. However, well documented human volunteer
studies indicate that SAS up to concentrations of 60% active matter is not a significant
skin irritant in humans. Local effects of hand wash solutions containing SAS do not cause
concern given that SAS is not a contact sensitizer and that the concentrations of SAS in
such solutions are well below 1% and therefore not expected to be irritating to eye or
skin. Laundry pre-treatment tasks, which may translate into brief hand skin contact with
higher concentrations of SAS, may occasionally result in mild irritation easily neutralized
by prompt rinsing of the hands in water. Potential irritation of the respiratory tract is not
a concern given the very low levels of airborne SAS generated as a consequence of
cleaning spray aerosols or laundry powder detergent dust.
In view of the extensive database on toxic effects, the low exposure values calculated and
the resulting large Margin of Exposure described above, it can be concluded that use of
SAS in household laundry and cleaning products raises no safety concerns for the
consumers. 


Secondary alkane sulfonate (SAS) is an anionic surfactant and was manufactured by
sulfoxidation of n-paraffins already in 1940 (Platz and Schimmelschmidt, 1940). It was
introduced as surfactant in the 1960s. Very good water solubility, high wetting action,
pronounced foaming power, excellent grease- and soil dispersing properties make SAS an
important surfactant ingredient in detergents especially for dish washing (Clariant, 2000).
Several reviews for SAS are available which were used as starting point of this
assessment (Painter, 1992; Vollebregt and Westra, 1998; Vollebregt and Westra, 2000;
Madsen et al, 2001).
In addition a Life-cycle assessment (LCA) for surfactants exists where SAS is covered as
well (Stalmans et al, 1995). 


CAS Numbers in use for EU
CAS No. 85711-69-9 and EINECS No. 288-330-3 for “Sulfonic acids, C13-17-secalkane, sodium salts” represent the main SAS type used in the European market and are
addressed in this risk assessment. The assessment provided in this report also includes
other CAS-No. given below in Table 3.1.1 with their respective CAS/EINECS numbers
and names:
Table 3.1.1: CAS and EINECS numbers of SAS in the European market
CAS No. EINECS No. NAME
85711-69-9 288-330-3 Sulfonic acids, C13-17-sec-alkane, sodium salts
68037-49-0 268-213-3 Sulfonic acids, C10-18-alkane, sodium salts (used in IUCLID)
97489-15-1 307-055-2 Sulfonic acids, C14-17-sec-alkane, sodium salts
85711-70-2 288-331-9 Sulfonic acids, C14-18-sec-alkane, sodium salts
75534-59-7 - Sulfonic acids, C13-18-sec-alkane, sodium salts 


Chemical structure and composition
SAS in the European market is a specific and rather constant mixture of closely related
isomers and homologues generated by sulfoxidation of n-paraffins. SAS contains a
sulfonate group distributed over the n-paraffin chain and mainly located at one of the
secondary C-atoms, as shown below (Clariant, 2000):
m + n = 11-14
Average chain length: C15,9
Average Mol weight 328 g/Mol

H3C (CH2) CH
SO3Na
(CH2 m )
n CH3
The linear alkyl chain (linearity > 98%) has typically 14 to 17 carbon units with an
average of 15,9 carbon atoms which corresponds to an average molecular weight of 328
Dalton. The C-chain distribution is given in table 3.1.2
Table 3.1.2: C-chain length distribution
Carbon chain Distribution
< C13 < 2 %
C13 – C15 > 45 %
C16 – C17 < 55 %
> C17 < 4 %
The content of primary alkane sulfonates is < 1 %. The sulfoxidation in the presence of
UV light and water results in a mixture of about 90 % mono- and 10 % disulfonic acids
(Hauthal, 1995), which contribute favourably to the well-balanced application properties.
The paraffin cut used for the sulfoxidation ensures a product characterised by optimum
foaming, wetting, emulsifying, washing and cleaning performance. The chemical
composition guarantees good solubility, strong surfactant properties and high chemical
stability at high and low pH values. The commercial SAS consists of many individual
components (Hauthal, 1995). The present risk assessment adopts a category approach,
i.e., considers the fate and effects of the SAS mixture as described above, rather than of
each isomer and homologue separately. Consequently, calculated values of SAS
properties refer to the average carbon chain length of about 16. 



The typical composition and the appearance of commercial products is given in table
3.1.3 (Clariant, 2000). While SAS obtained from the sulfoxidation, is a waxy residue,
SAS 60 and SAS 30 are aqueous mixtures of SAS.
Table 3.1.3: Typical composition of commercial SAS 60 and 30 (Clariant, 2000)
SAS 60 SAS 30
Active content ca. 60 % ca. 30%
Appearance yellowish soft paste clear faintly yellowish liquid
Sodium sulfate max. 4,2 % max. 2,1 %
Residual paraffins max. 0,7 % max. 0,4 %
Physico-chemical properties
In table 3.1.4 the physico-chemical properties of SAS are given
Table 3.1.4: Physico-chemical data of SAS
Parameter Value Reliability Remark
Physical state yellowish waxy 1 Clariant, 2003
Bulk density
(kg/m3
)
ca. 600 1 Clariant, 2003
Melting point
(deg C)
< 200 (softening) 1 Clariant, 2003
Boiling point
(deg C)
not determ. - Clariant, 2003
Vapour pressure at
25 C (Pa)
5,3*10-11 2 calculated for C16 SAS1
(US EPA, 2000a)
Water solubility at
25 C (g/L)
ca. 300 1 Clariant, 2003
log Kow 2,76 2 calculated for C16 SAS1
(US EPA, 2000b)
Koc (L/kg) not applicable - see Chapter 4.1.1.6
Henry coefficient
(unitless) 3,6*10-5 2 calculated for C16 SAS1
(US EPA, 2000c) 
pKa (25 C) < 0 2
estimated for C16 SAS1
 based on
pKa of Methansulfonic acid
(Evans, 2003)
pH (20 C, 10g/L) ca. 7 1 Clariant, 2003
Reliability criteria of IUCLID are used:
1 valid without restriction 2 valid with restrictions 3 not valid 4 validity is not assignable 1 explanation sees following text on Physico-chemical data
Boiling point and Vapour pressure
As SAS is a sodium salt, a very high boiling point can be expected and was therefore not
measured. In addition, the vapour pressure of this salt at room temperature is so low that
it could not be experimentally determined; instead, it was estimated for 16C-SAS (see
table 3.1.4, US EPA, 2000a).
Octanol- water partitioning coefficient Kow
The Kow of SAS cannot be measured because of its surface active properties (Boethling
and Mackay, 2000). Instead the Kow was estimated for 8-Hexadecasulfonic acid , sodium
salt (16C-SAS) with the US EPA Property Estimation Program KOWWin (see table
3.1.4, US EPA, 2000b) providing all structural fragments available including the ionic
sulfonate group.
Henry’s Law Constant (HLC)
The estimated HLC of 16C-SAS is very low due to the negligible vapour pressure of
16C-SAS and its high water solubility. Therefore the ionic SAS is not volatile (see table
3.1.4, US EPA, 2000c).
Acid constant pKa and pH
A pKa value for the corresponding acid of SAS and for longchain primary or secondary
alkanesulfonic acids is not available. Instead the pKa of Methanesulfonic acid of – 2,6
(Evans, 2003) determined in DMSO was used to estimate that the longchain
alkanesulfonic acid having +I inductive carbon chain would increase the pKa but would
be most likely still below 0. This means that the SAS-based sulfonic acid is a very strong 
acid and that these sulfonic acids will be completely deprotonated to sulfonates under
environmental conditions. In addition the corresponding bases - the alkanesulfonates - are
very weak bases and therefore aqueous solutions of these salts are neutral as is
demonstrated with the measured pH of a SAS solution


 Manufacturing Route
Basically, secondary alkane sulfonates (SAS) can be manufactured by sulfoxidation and
sulfochlorination.
The alkane sulfonates produced by sulfochlorination (Reed, 1933) are mainly used for
non-detergent technical purposes as they contain undesirable by-products. SAS
manufactured by sulfochlorination are not covered in this HERA risk assessment.
The secondary alkane sulfonates manufactured by sulfoxidation (Platz and
Schimmelschmidt, 1940) are mainly used in household products and have a low content
of undesirable by-products. They are prepared by reacting n-paraffins with sulfur dioxide
and oxygen in the presence of water whilst irradiating with ultraviolet light. Secondary
Alkane Sulfonates (SAS) obtained from sulfoxidation are a mixture of closely related
isomers and homologues of secondary alkane sulfonate sodium salts.
RH + 2 SO2 + O2 + H2O RSO3H + H2SO4
RSO3H + NaOH RSO3Na + H2O
The industrial sulfoxidation of n-paraffins is a photooxidation in the presence of water
carried out in a multi-lamp reactor. This process does not require any catalyst or solvent.
A gaseous mixture of SO2 and O2 is introduced into the reaction mixture by gas injection. 
The mixture of SO2, O2 and n-paraffins is exposed to UV light produced by high-pressure
mercury lamps. The reaction gas is circulated and the reaction liquid is removed at the
bottom of the reactor. The product phase which is the lower layer is separated and the
upper layer which is the (unreacted) paraffin phase, is cooled and replenished with water.
The unreacted n-paraffins are returned into the reactor again.
After concentration of the product phase under reduced pressure, separation of the
sulphuric acid and neutralization of the concentrate with sodium hydroxide solution, the
remaining paraffins are removed from the raw product by steam destillation with
superheated steam. The steam distillate is again separated and the paraffins are returned
to the reaction mixture. The remaining product melt is finally distributed into water to
achieve commercial aqueous SAS products with 60% or 30% SAS content 


The total alkane sulfonate production capacity in Western Europe (comprising the
sulfochlorination and sulfoxidation processes) is estimated to be 81.000 tons/year in 2001
(CESIO, 2003).
Sales and captive use in Western Europe accounts for about 76.000 tons/year in 2001
(CESIO, 2003). According to CESIO (2003), 63 % of the 76.000 tons/year in 2001 are
used in household applications (48.000 tons/year). The alkane sulfonates produced via 
sulfochlorination are not used in household applications. In addition to the household
application, 24 % (18.000 tons/year) alkane sulfonate for Industrial & Institutional use is
ultimately released down-the-drain. The remaining 13 % (10.000 tons/year) alkane
sulfonate for technical uses (textile, leather, paper, polymers, constructives, paint,
coating, inks, minery, metalworking, oil refinery, agriculture, food and feed additives
etc.) are basically non-down-the-train applications. For this HERA targeted Risk
Assessment the household use (scope of HERA) and Industrial & Institutional use -
together 66.000 tons/year - ultimately released down-the-drain, are taken into account.
Most of the commercial SAS is sold as an aqueous solution with 60 % or 30 % active
ingredient 



The total alkane sulfonate production capacity in Western Europe (comprising the
sulfochlorination and sulfoxidation processes) is estimated to be 81.000 tons/year in 2001
(CESIO, 2003).
Sales and captive use in Western Europe accounts for about 76.000 tons/year in 2001
(CESIO, 2003). According to CESIO (2003), 63 % of the 76.000 tons/year in 2001 are
used in household applications (48.000 tons/year). The alkane sulfonates produced via 
sulfochlorination are not used in household applications. In addition to the household
application, 24 % (18.000 tons/year) alkane sulfonate for Industrial & Institutional use is
ultimately released down-the-drain. The remaining 13 % (10.000 tons/year) alkane
sulfonate for technical uses (textile, leather, paper, polymers, constructives, paint,
coating, inks, minery, metalworking, oil refinery, agriculture, food and feed additives
etc.) are basically non-down-the-train applications. For this HERA targeted Risk
Assessment the household use (scope of HERA) and Industrial & Institutional use -
together 66.000 tons/year - ultimately released down-the-drain, are taken into account.
Most of the commercial SAS is sold as an aqueous solution with 60 % or 30 % active
ingredient 


The potential of SAS to biodegrade under aerobic conditions was intensively
investigated. The results of these tests were listed in reviews but mostly without sufficient
details (e.g. DHI, 2001; Painter, 1992; Schoeberl, 1997; Voolebregth and Westra, 1998).
In table 4.1.1.1.1. those biodegradation results were given where sufficient information
was available to differentiate between primary and ultimate biodegradation and to check
the reliability of the results as well. Primary biodegradation (EU, 1999) means
alteration in the chemical structure of a substance, brought about by biological action,
resulting in the loss of specific properties (e.g. for surfactants surface activity and
ecotoxicity). Primary biodegradation of surfactants is often monitored using colorimetric
analytical methods (e.g. MBAS Methylene Blue Active Substances). Ultimate
biodegradation (EU, 1999) is the level of degradation achieved when the test compound
is totally utilised by micro-organisms resulting in the production of carbon dioxide (for
aerobic conditions), water, mineral salt(s) and new microbial cellular constituents
(biomass). Ultimate biodegradation is monitored using analytical methods appropriate for
the test method applied (e.g. removal of Dissolved Organic Carbon (DOC), carbon
dioxide formation etc). Achieving rapid primary biodegradation for surfactants is
required by EU legislation (e.g. EU, 1973; EU, 1982) but only if the surfactant meets the
criteria for ready (ultimate) biodegradability it can be concluded that the chemical will
undergo rapid and ultimate biodegradation in the environment


The data show that SAS is ultimately biodegradable and meets the OECD criteria for
ready biodegradability. For the following exposure assessment of SAS it is important to
note that several comparative studies exist into the biodegradation kinetics of SAS and
LAS in standard screening tests. They show unequivocally that primary as well as 
ultimate biodegradation of SAS is considerably faster. For instance, MBAS removal in
the OECD Screening Test was about 10% after 5 days for LAS while SAS had already
attained 85% in this time period (Tegewa, 1989). Similarly, the linear part of the CO2
evolution kinetics determined in the CO2 evolution test (OECD 301B) revealed a
mineralisation rate of 6.2%/d for SAS and 3.1%/d for LAS (Clariant, 2004). Finally,
comparative studies of the CO2 evolution from radiolabelled (U-14C) SAS and (ring-14C)
LAS in a 12-day batch test (Lötzsch et al., 1979) underlined again the faster and more
extensive mineralisation of SAS.
The results from the Sewage Treatment Plant Simulation tests show a very high removal.
Hrsak et al (1981) have also demonstrated that SAS loadings varying from ca. 50 to 500
mg/L can be fed in to a simulation test system (OECD Confirmatory Test) without any
effect on the high primary degradation of SAS.
Metabolic Pathway for SAS
Primary n-alkanesulfonates are metabolised to bisulfite and the corresponding aldehyde 


The metabolic pathway of SAS is not fully investigated. Thysse and Wanders (1974)
isolated an alkane sulfonate hydroxylase which was able to desulfonate n-C12-SAS
forming 2-Dodecanone. Swisher (1987) suggested that the first step in metabolism is the 
formation of a ketobisulfite, which forms the ketone and bisulfite. The ketone may be
further oxidized to an alkylacetate ester. Ester cleavage yields acetate and an alcohol
which is further metabolised via ß-oxidation. Based on this metabolic pathway, the
formation of recalcitrant metabolites is unlikely. This was also proven experimentally in
a special test for the detection of recalcitrant metabolites (Gerike and Jasiak, 1985, 1986).
Biodegradation / Elimination in Continuous Activated Sludge Systems (CAS)
As was shown in table 4.1.1.1.1 SAS is eliminated in Continuous Activated Sludge
Systems to a very high extent. Around of 16% SAS is carried over to activated sewage
sludge (Field et al., 1995, see Chapter 4.1.2 Removal) and ca. 83% of the elimination
determined in CAS Tests can be attributed to biodegradation
Biodegradation and Half-lives of SAS in River water
Schöberl et al. (1998) have measured the primary biodegradation of SAS in river water
using a river simulation model (aquatic stair case model) fed with the effluent of a
Confirmatory Test and flow rate of 1 m/h. The half-life from the primary degradation in
the river simulation model of 0,7 to 0,9 h is in the same order of magnitude as was
measured for LAS in a comparable river simulation model (t1/2 = 2.2 – 4.7 h) (Steber
1997) and in European rivers (1-3 h) (see HERA, 2002b).
As the LAS data are based on measurements in rivers the half-life for SAS in river water
is assumed to be the same and a half-life of 3h is used as realistic worst case.
Anaerobic biodegradation in water
SAS is not biodegraded under strict anaerobic conditions (Field et al., 1995).
4.1.1.2 Biodegradation in Sediment and Soil
Experimental data on the aerobic and anaerobic degradability of SAS in sediment and
soil are not available. However, it is justified to make use of the pertinent comprehensive
information about LAS (HERA, 2002b) for prediction of the biodegradation kinetics of
SAS in sediment and soil. It has been established that primary and ultimate
biodegradation of SAS in standard screening tests is faster compared to LAS (see chapter 
4.1.1.1). Furthermore, it could be shown (Steber & Richterich, 1993) that the
biodegradation of chemicals in screening tests using soil as inoculum is at least as
effective as using a standard (sewage) inoculum. Consequently, it can be conservatively
concluded that the half-life of LAS in aerated soil (t1/2 = 7 d) is also applicable to SAS. In
agreement with the EU Technical Guidance Documents on Risk Assessment for
Chemical substances (EU, 2003a) the half-life of 7d is also being used in the exposure
calculations for aerated sediment.
4.1.1.3 Abiotic Degradation in Air
Due to the very low volatility of SAS degradation in air is not a relevant fate pathway and
therefore is not considered in this assessment.
4.1.1.4 Abiotic Degradation in Water, Sediment and Soil
SAS does not hydrolyse in water, sediment and soil. The molecular structure indicates
that photolysis in surface water and top soil can be neglected as well.

4.1.1.5 Volatilisation
Based on the Henry coefficient of SAS (see table 3.1.2) volatilisation is not a relevant
elimination factor.
4.1.1.6 Sorption to soil, sediment and sludge
The sorption behaviour of SAS was determined for 5 Eurosoils and 1 Sediment (Clariant,
2001a) according to the OECD Guideline 106. Sorption to municipal sewage sludge was
determined according ISO Guideline 18749 (Clariant, 2001b). The sorption constants Kd
are shown in table 4.1.1.6. The sorptive effects in the different matrices cannot be
attributed to the organic carbon content alone as is obvious from the ‘calculated Koc’
values (see table 4.1.1.6) which vary considerably. Koc alone is therefore not an adequate
parameter to describe the sorption behaviour of SAS. 
Table 4.1.1.6 Measured Sorption constants of SAS to Sediment, Soils and
municipal Sewage sludge (Clariant, 2001a & 2001b)
Sediment EUROSOIL
4
EUROSOIL
2
EUROSOIL
1
EUROSOIL
3
EUROSOIL
5
Sewage
sludge
Description sand silt silt loam clay


4.1.1.7 Bioconcentration
Salts of strong acids like sulfonates are known to be poorly absorbed into living cells
because the charged species are hindered to cross membranes (Boethling & Mackay,
2000). Bioconcentration studies with radiolabelled homologues of the surfactant Linear
Alkylbenzenesulfonate (LAS) gave BCF values allowing calculation of an average BCF=
66 L/kg (HERA, 2002b).
The absorption behaviour of charged species is taken into account by the QSAR
calculation programme BCFWin from US EPA (US EPA, 2000d) which uses different
Kow dependent equations for ionic compounds. As for SAS no measured BCF values are
available a QSAR approach was used and applied to 8-Hexadecansulfonic acid sodium
salt (C16-SAS) (see table 4.1.1.7). 


SAS is one of the major anionic surfactants used in the market of dishwashing, laundry
and cleaning products. In this respect about 63% of the total SAS volume in Western
Europe is assigned for the use in household applications. Main uses (>80%) are standard
dishwashing liquids (at a typical concentration range of 3% to 29%). Minor uses are
laundry detergents at a typical concentration range of 1% to 15%, household cleaners at a
typical concentration range of 0.2% to 15%. The SAS volumes used for cosmetics hair,
body care products and industrial cleaners are outside the scope of this HERA-Risk
assessment. 



Conclusion
SAS (60% active matter) was tested for systemic toxicity using both, the oral and the
dermal route of exposure. With regard to oral uptake, a chronic feeding study has
demonstrated that concentrations of SAS in the diet up to 0.4% have been tolerated by the
animals without any significant effect. As a first approximation this concentration
corresponds to about 200 mg/kg body weight per day. Even at the highest level of 2% in
the diet (approximately 1000 mg/kg body weight per day) only unspecific effects not
accompanied by any functional or structural changes have been observed. In view of the
results of a 2-year bioassay in rats, dietary concentrations of up to 2% SAS (w/w)
(approximately 1000 mg/kg bw/day) were tolerated without any significant toxicological
side effects (see 5.2.1.7).
Repeated dermal application on mice of SAS solutions as high as 32% (w/v) for 4
respectively 5 weeks, resulted neither in mortality nor any substance related systemic
toxicity. The only changes noted were local skin effects due to irritative properties. SAS
solutions up to 8% (w/v) proved to be without any effects.
















Hostapur SAS 60
SURFACTANT
Hostapur SAS – A surfactant with optimum application properties and less impact on the environment.
Benefits
Very good solubility
High wetting action
Pronounced foaming power
Excellent grease- and soil-dispersing action
Viscosity-dressing action
Outstanding enzyme compatibility
Chemical stability over a wide pH range
Increases action of modern detergent additives
Very good electrolyte compatibility
Possibility of combination with anionic, nonionic and amphoteric surfactants
Cost reduction
Low aquatic toxicity with less impact on the environment

Packaging and Handling
Dishwashing liquids
Laundry detergents
Household cleaners
Cosmetic hair and bidy care products
Industrial cleaners
Special technical sectors
Documents

HOSTAPUR SAS 60
Malzeme No. : 102490
Kimyasal yapısı: Sekonder alkan sülfonat sodyum tuzu (60% aktif)
INCI adı:: Sodium C14-17 Sec Alkyl Sulfonate
1.2. Madde veya karışımın belirlenmiş kullanımları ve tavsiye edilmeyen kullanımları
Madde/Karışımın kullanım alanı
Endüstriyel sektörü : Deterjanlar
Kullanım şekli : Deterjanlar için hammadde



Sulfonic acids, C14-17-sec-alkane, sodium salts
cas no : 97489-15-1


Sulfonic acids, C14-
17-sec-alkane,
sodium salts
CAS-No.: 97489-15-1


HOSTAPUR SAS-60 (60% active), Sodium C14 – 17 Alkyl sec. Sulfonate is an anionic, biodegradable surfactant for the detergent industry.

Sodium C14-17 Alkyl Sec Sulfonate. Hostapur SAS 60 by Clariant acts as a detergent base and surfactant. It possesses good wetting properties and high degreasing effect. 
Hostapur SAS 60 finds application in formulating bubble baths, shower gels, shampoos and personal care cleansing products.


Transportation
The loading temperature ex works for delivery by road tanker is for Hostapur SAS 60 → 70–90 °C.
Although Hostapur SAS 60 is still pumpable at room temperature with the pumps mentioned in section Conveying/mixing, the temperature during transport should not fall below 
65 °C so as to facilitate handling and conveying. The road tankers intended for transporting Hostapur SAS 60 have standard R 3” connections or conventional hose couplings.

Storage
Hostapur SAS 60 separates out in storage into two phases, one containing more surfactant than the other. In addition, sodium sulphate can separate out at fairly low temperatures.
 It is therefore necessary to stir or pump round the tank contents constantly and at the same time to maintain a storage temperature of 65–90 °C. If a circulating pump is used, 
entrainment of air must be prevented by suitable design of the return pipe.


Ataman Kimya SAS grades are versatile anionic surfactants with outstanding surface-active properties like strong grease removal and excellent wetting behavior in Home Care, Industrial & Institutional 
Cleaning, Technical Applications and Personal Care. They have a good ecotoxicological profile and show a good dermatological and toxicological compatibility. SAS grades are produced 
by sulphoxidation of n-paraffin by the Hoechst light/water process and are environmentally friendly surfactants with very good biodegradability.


Benefits
Strong grease removal
Excellent wetting & emulsification properties
Good particle soil removal
High tolerance towards hard water
Stability over a wide pH range and high compatibility with enzymes, electrolytes and oxidizing agents, like chlorine
Viscosity depressing action
Benzene and ethylene oxide free
Good skin compatibility
Low aquatic toxicity with low impact on the environment



Technical Profile
Chemical Name: Sulfonic acids, C14-17-sec-alkane, sodium salts
Available in liquid, paste as well as in pellet and granular form
Color: Colorless to yellowish
Compatible with all other detergent ingredients
Permits universal processing in all fields of use


Home Care:

Manual Dishwashing
Hard Surface Cleaning
Fabric Care:

Laundry Detergents
Special Detergents
Laundry Aids
I&I:

Industrial Cleaner
Institutional Cleaner


WeylClean SAS 60 (Hostapur SAS 60)
Вторичный алкансульфонат, натриевая соль (60% активного вещества)

Анионное ПАВ. Вторичный алкилсульфонат натрия С14-С17, 60% паста. Обладает отличной пенообразующей способностью, в том числе в жесткой воде, 
хорошей солюбилизирующей и эмульгирующей способностью в отношении масел и жиров, превосходными моющими свойствами для удаления различных загрязнений,
 малой чувствительностью к присутствию электролитов. WeylClean SAS 60 химически устойчив в сильнощелочных и сильнокислых средах, в присутствии окислителей,
 термически устойчив в водных растворах при температуре кипения, в порошках и гранулах до температур 230-250°С. Отлично совместим с энзимами, обладает высокой 
биоразлагаемостью. Подробнее: https://www.atamankimya.com

WeylClean SAS 93
Анионное ПАВ. Вторичный алкилсульфонат натрия С14-С17, 93% основного вещества. Пеллеты светло-желтого цвета. Обладает отличной пенообразующей способностью, в том 
числе в жесткой воде, хорошей солюбилизирующей и эмульгирующей способностью в отношении масел и жиров, превосходными моющими свойствами для удаления различных загрязнений,
 малой чувствительностью к присутствию электролитов. WeylClean SAS 93 химически устойчив в сильнощелочных и сильнокислых средах, в присутствии окислителей, термически устойчив
 в водных растворах при температуре кипения, в порошках и гранулах до температур 230-250°С. Отлично совместим с энзимами, обладает высокой биоразлагаемостью.


Алкилсульфонат Другие названия: S-60, вторичный сульфонат алкана Внешний вид: желтая коричневая толстая жидкость Производительность: хорошая производительность для диффузии и 
уменьшения поверхностного натяжения, быстрая проницаемость Растворимость: растворим в любой жесткости воды Кислота и щелочь: PH7- 8 (1% водный раствор) Ионизация: анионное
 Использование смеси: может одновременно использоваться вместе с анионными и неионогенными поверхностно-активными веществами. Стабильность: стойкость к кислоте, щелочи, жесткой воде,
 солеустойчивости. Содержание: 60% Проникновение: ≤ 3 секунды (1% раствор)



Алкилсульфонат






Другие названия: S-60, вторичный сульфонат алкана
Внешний вид: желто-коричневая толстая жидкость
Производительность: хорошая производительность для диффузии и уменьшения поверхностного натяжения, высокая проницаемость
Растворимость: растворим в любой жесткости воды
Кислота и щелочь: PH7-8 (1% водный раствор)
Ионизация: анионная
Использование смеси: одновременно может использоваться вместе с анионными и неионогенными поверхностно-активными веществами
Стабильность: стойкость к кислотам, щелочам, жесткой воде, солеустойчивости.
Содержание: 60%
Проникновение: ≤ 3 секунды (1% раствор)

Использование:
1.Печать и крашение промышленности: в основном используется для приготовления рафинера, детергента, выравнивающего средства, диспергатора.
2. Производство масла: для уменьшения поверхностного натяжения системы, используемого в качестве масляно-вытесняющего агента в нефтяном месторождении трех процессов добычи нефти.
3. Крашение промышленности: используется в качестве диффузионных добавок, используемых при производстве водорастворимых красителей, в качестве коммерческих красителей для диспергаторов, улучшает красители растворимости и вододиспергируемости.
4. Кожевенная промышленность: как кожа проникающий агент, крася вспомогательные вещества.
5. Коклюшный тушитель: является основным компонентом тушителя Coke с идеальной производительностью.
6. Пестицидная промышленность: используется в качестве смачиваемого порошка пестицида, эмульгатора, а также диспергирующего агента для аэрозольного пестицида с очень высоким соотношением эксплуатационных характеристик.
7.Concrete добавки: используется в качестве водоотталкивающего агента и воздуха, захваченного для продукта цементного бетона с небольшим количеством.
8. Ежедневная химическая промышленность: составной компонент ежедневного моющего средства.
9. Полимерный эмульгатор: анионный эмульгатор для эмульсионной полимеризации акриловой кислоты.
10. Гальваническая промышленность: используется в качестве абсорбента.
11 бумажная промышленность: используется в качестве де-чернильного агента.

Упаковка: пластиковая бочка 200 л или пластиковая бочка 125 л


 
Ataman Kimya A.Ş. © 2015 Tüm Hakları Saklıdır.