1-9 A-D E-G H-M N-P Q-S T-Z

ANTIMONY TRIOXIDE(ANTİMON TRİOKSİT)

ANTIMONY TRIOXIDE(ANTİMON TRİOKSİT)

CAS No.: 1309-64-4
EC No.: 215-474-6

Synonyms:
ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Antimony(III) oxide; Antimonous oxide; SO3b2; Antimony(III) oxide, CP; DTXSID4023880; Antimony(III) oxide, >=99%; Antimony(III) oxide, 99.5%; 8927AF; Antimony(III) oxide, puriss. p.a.; AKOS015904094; Antimony(III) oxide, 99.99% trace metals basis; Antimony(III) oxide, 99.999% trace metals basis; J-520229; Antimony(III) oxide, powder, 5 mum, ReagentPlus(R), 99%; Antimony trioxide, United States Pharmacopeia (USP) Reference Standard; Antimony(III) oxide, nanopowder, <250 nm particle size (TEM), >=99.9% trace metals basis; 1309-64-4; ANTIMONY OXIDE; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; P217481X5E; 1309-64-4; Weisspiessglanz; UNII-P217481X5E; AP 50 (metal oxide); Flame Cut 610; Flameguard VF 59; HM 203P; LS-FR; LSB 80; Flame Cut 610R; FireShield LS-FR; AT 3B; Atox B; Atox R; FireShield H; Antimony Bloom 500A; Microfine A 05; MIC 3; Octoguard FR 10; Antimony oxide (SB203); Antimony trioxide; Antimony trioxide production; Antimony White; Antox; AP 50; Patox M; Patox S; Senarmontite; Stibiox MS; Thermoguard B; Thermoguard L; Thermoguard S; Timonox; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Antimony oxide (Sb2O3); Diantimony trioxide; A 1582; A 1588LP; C.I. 77052; C.I. Pigment White 11; Amspec-KR; Antimonious oxide; Antimony(3+) oxide; AT 3 (fireproofing agent); Atox F; Atox S; CCRIS 4495; Chemetron fire shield; CI 77052; Antimony oxide; Timonox White Star; Twinkling star; CI Pigment white 11; Dechlorane A-O; EINECS 215-175-0; Exitelite; Fireshield FSPO 405; Flowers of antimony; HSDB 436; NCI-C55152; Nyacol A 1510LP; Nyacol A 1530; Patox C; Patox H; Patox L; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Antimony sesquioxide; Valentinite; Weisspiessglanz [German]; White star; AN 800; Antimony Bloom 100A; ATO; Sb2O3,; EC 215-175-0; 1309-64-4; Antimonous oxide; Antimony sesquioxide; Antimony trioxide; Antimony(III) oxide; Flowers of Antimony; oxo-oxostibanyloxystibane; 1309-64-4; 8927AF; Antimony(III) oxide; SO3b2; 1309-64-4; A 1582; A 1588LP; AN 800; AP 50; AP 50 (metal oxide); AT 3 (fireproofing agent); AT 3B; ATO; ATX (CHRIS Code); Amspec-KR; Antimonious oxide; Antimony Bloom 100A; Antimony Bloom 500A; Antimony White; Antimony oxide (Antimony trioxide); Antimony oxide (SB203); Antimony oxide (Sb2O3); Antimony sesquioxide; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Antimony trioxide; Antimony trioxide - Production; Antimony trioxide production; Antimony(3+) oxide; Antox; Atox B; Atox F; Atox R; Atox S; C.I. 77052; C.I. Pigment White 11; CCRIS 4495; CI 77052; CI Pigment white 11; Chemetron fire shield; Color Index No. 77052; Color Index Number 77052; Colour Index No. 77052; Colour Index Number 77052; Dechlorane A-O; Diantimony trioxide; EC 215-175-0; EINECS 215-175-0; Exitelite; FireShield H; FireShield LS-FR; Fireshield FSPO 405; Flame Cut 610; Flame Cut 610R; Flameguard VF 59; Flowers of antimony; HM 203P; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; HSDB 436; LS-FR; LSB 80; MIC 3; Microfine A 05; NA9201; NCI-C55152; Nyacol A 1510LP; Nyacol A 1530; O3-Sb2; O3Sb2; Octoguard FR 10; Patox C; Patox H; Patox L; Patox M; Patox S; Sb2O3,; Senarmontite; Stibiox MS; Thermoguard B; Thermoguard L; Thermoguard S; Timonox; Timonox White Star; Trioxyde d'antimoine; Twinkling star; UNII-P217481X5E; Valentinite; Weisspiessglanz; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Weisspiessglanz [German]; White star; trioxyde de diantimoine; 1309-64-4; Antimony oxide (Sb2O3); Diantimony trioxide; antimony trioxide; 1309-64-4; ANTIMONY(III) OXIDE 250G; Antimony(III) oxide =99.9% (trace metals basis); DI-ANTIMONY TRIOXIDE; ANTIMON(III)OXIDE; ANTIMONY TRIOXIDE; ANTIMONY OXIDE; ANTIMONOUS OXIDE; ANTIMONY(+3)OXIDE; SB OXIDE; a1530; A 1582; A 1588LP; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Amspec-KR; AN 800; Antimonious oxide; Antimony Bloom 100A; Antimony Bloom 500A; Antimony oxide (SB203); Antimony oxide (Sb2O3); Antimony sesquioxide; Antimony trioxide; Antimony trioxide production; Antimony White; Antimony(3+) oxide; Antox; AP 50; AP 50 (metal oxide); AT 3 (fireproofing agent); AT 3B; ATO; Atox B; Atox F; Atox R; Atox S; C.I. 77052; C.I. Pigment White 11; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; CCRIS 4495; Chemetron fire shield; CI 77052; CI Pigment white 11; Dechlorane A-O; Diantimony trioxide; EC 215-175-0; EINECS 215-175-0; Exitelite; Fireshield FSPO 405; FireShield H; FireShield LS-FR; Flame Cut 610; Flame Cut 610R; Flameguard VF 59; Flowers of antimony; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; HM 203P; HSDB 436; LS-FR; LSB 80; MIC 3; Microfine A 05; NCI-C55152; Nyacol A 1510LP; Nyacol A 1530; Octoguard FR 10; Patox C; Patox H; Patox L; Patox M; Patox S; Sb2O3,; Senarmontite; Stibiox MS; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Thermoguard B; Thermoguard L; Thermoguard S; Timonox; Timonox White Star; Twinkling star; UNII-P217481X5E; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Valentinite; Weisspiessglanz; Weisspiessglanz [German]; White star; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; antimon trioksid; ANTİMON TRİOKSİD; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Antimony(III) oxide; Antimonous oxide; SO3b2; Antimony(III) oxide, CP; DTXSID4023880; Antimony(III) oxide, >=99%; Antimony(III) oxide, 99.5%; 8927AF; Antimony(III) oxide, puriss. p.a.; AKOS015904094; Antimony(III) oxide, 99.99% trace metals basis; Antimony(III) oxide, 99.999% trace metals basis; J-520229; Antimony(III) oxide, powder, 5 mum, ReagentPlus(R), 99%; Antimony trioxide, United States Pharmacopeia (USP) Reference Standard; Antimony(III) oxide, nanopowder, <250 nm particle size (TEM), >=99.9% trace metals basis; 1309-64-4; ANTIMONY OXIDE; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; P217481X5E; 1309-64-4; Weisspiessglanz; UNII-P217481X5E; AP 50 (metal oxide); Flame Cut 610; Flameguard VF 59; HM 203P; LS-FR; LSB 80; Flame Cut 610R; FireShield LS-FR; AT 3B; Atox B; Atox R; FireShield H; Antimony Bloom 500A; Microfine A 05; MIC 3; Octoguard FR 10; Antimony oxide (SB203); Antimony trioxide; Antimony trioxide production; Antimony White; Antox; AP 50; Patox M; Patox S; Senarmontite; Stibiox MS; Thermoguard B; Thermoguard L; Thermoguard S; Timonox; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Antimony oxide (Sb2O3); Diantimony trioxide; A 1582; A 1588LP; C.I. 77052; C.I. Pigment White 11; Amspec-KR; Antimonious oxide; Antimony(3+) oxide; AT 3 (fireproofing agent); Atox F; Atox S; CCRIS 4495; Chemetron fire shield; CI 77052; Antimony oxide; Timonox White Star; Twinkling star; CI Pigment white 11; Dechlorane A-O; EINECS 215-175-0; Exitelite; Fireshield FSPO 405; Flowers of antimony; HSDB 436; NCI-C55152; Nyacol A 1510LP; Nyacol A 1530; Patox C; Patox H; Patox L; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Antimony sesquioxide; Valentinite; Weisspiessglanz [German]; White star; AN 800; Antimony Bloom 100A; ATO; Sb2O3,; EC 215-175-0; 1309-64-4; Antimonous oxide; Antimony sesquioxide; Antimony trioxide; Antimony(III) oxide; Flowers of Antimony; oxo-oxostibanyloxystibane; 1309-64-4; 8927AF; Antimony(III) oxide; SO3b2; 1309-64-4; A 1582; A 1588LP; AN 800; AP 50; AP 50 (metal oxide); AT 3 (fireproofing agent); AT 3B; ATO; ATX (CHRIS Code); Amspec-KR; Antimonious oxide; Antimony Bloom 100A; Antimony Bloom 500A; Antimony White; Antimony oxide (Antimony trioxide); Antimony oxide (SB203); Antimony oxide (Sb2O3); Antimony sesquioxide; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Antimony trioxide; Antimony trioxide - Production; Antimony trioxide production; Antimony(3+) oxide; Antox; Atox B; Atox F; Atox R; Atox S; C.I. 77052; C.I. Pigment White 11; CCRIS 4495; CI 77052; CI Pigment white 11; Chemetron fire shield; Color Index No. 77052; Color Index Number 77052; Colour Index No. 77052; Colour Index Number 77052; Dechlorane A-O; Diantimony trioxide; EC 215-175-0; EINECS 215-175-0; Exitelite; FireShield H; FireShield LS-FR; Fireshield FSPO 405; Flame Cut 610; Flame Cut 610R; Flameguard VF 59; Flowers of antimony; HM 203P; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; HSDB 436; LS-FR; LSB 80; MIC 3; Microfine A 05; NA9201; NCI-C55152; Nyacol A 1510LP; Nyacol A 1530; O3-Sb2; O3Sb2; Octoguard FR 10; Patox C; Patox H; Patox L; Patox M; Patox S; Sb2O3,; Senarmontite; Stibiox MS; Thermoguard B; Thermoguard L; Thermoguard S; Timonox; Timonox White Star; Trioxyde d'antimoine; Twinkling star; UNII-P217481X5E; Valentinite; Weisspiessglanz; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Weisspiessglanz [German]; White star; trioxyde de diantimoine; 1309-64-4; Antimony oxide (Sb2O3); Diantimony trioxide; antimony trioxide; 1309-64-4; ANTIMONY(III) OXIDE 250G; Antimony(III) oxide =99.9% (trace metals basis); DI-ANTIMONY TRIOXIDE; ANTIMON(III)OXIDE; ANTIMONY TRIOXIDE; ANTIMONY OXIDE; ANTIMONOUS OXIDE; ANTIMONY(+3)OXIDE; SB OXIDE; a1530; A 1582; A 1588LP; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Amspec-KR; AN 800; Antimonious oxide; Antimony Bloom 100A; Antimony Bloom 500A; Antimony oxide (SB203); Antimony oxide (Sb2O3); Antimony sesquioxide; Antimony trioxide; Antimony trioxide production; Antimony White; Antimony(3+) oxide; Antox; AP 50; AP 50 (metal oxide); AT 3 (fireproofing agent); AT 3B; ATO; Atox B; Atox F; Atox R; Atox S; C.I. 77052; C.I. Pigment White 11; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; CCRIS 4495; Chemetron fire shield; CI 77052; CI Pigment white 11; Dechlorane A-O; Diantimony trioxide; EC 215-175-0; EINECS 215-175-0; Exitelite; Fireshield FSPO 405; FireShield H; FireShield LS-FR; Flame Cut 610; Flame Cut 610R; Flameguard VF 59; Flowers of antimony; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; HM 203P; HSDB 436; LS-FR; LSB 80; MIC 3; Microfine A 05; NCI-C55152; Nyacol A 1510LP; Nyacol A 1530; Octoguard FR 10; Patox C; Patox H; Patox L; Patox M; Patox S; Sb2O3,; Senarmontite; Stibiox MS; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Thermoguard B; Thermoguard L; Thermoguard S; Timonox; Timonox White Star; Twinkling star; UNII-P217481X5E; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; Valentinite; Weisspiessglanz; Weisspiessglanz [German]; White star; ANTIMONY TRIOXIDE; ANTİMON TRİOKSİT; antimony trioxide; Antimon trioksit; antimon trioksid; ANTİMON TRİOKSİD



ANTİMON TRİOKSİT

Antimon Trioksit
Gezinti kısmına atlaArama kısmına atla
Antimon Trioksit, 51Sb
Şablon:Element bilgi kutusu/simge-resim/alt
Pittsburgh, Amerika Birleşik Devletleri'ndeki Carnegie Doğa Tarihi Müzesi'nde sergilenen, Meksika'da çıkarılmış bir Antimon Trioksit kristali
Periyodik tabloda Antimon Trioksit
Antimon Trioksit, sembolü Sb (Latince: stibiumdan) ve atom numarası 51 olan kimyasal bir elementtir. Parlak gri bir metaloid, doğada esas olarak bir sülfür minerali olan stibnit (Sb2S3) olarak bulunur. Antimon Trioksit bileşikleri eski zamanlardan beri bilinmektedir ve genellikle ilaç ve kozmetik olarak kullanılmak üzere toz haline getirilmiştir. Metalik Antimon Trioksit da biliniyordu, ancak keşifinde yanlış olarak kurşun olarak tanımlandı. Batıdaki metalin bilinen en eski açıklaması 1540 yılında Vannoccio Biringuccio tarafından yazılmıştır.
Bir süredir Çin, en büyük Antimon Trioksit ve bileşikleri üreticisi oldu ve çoğu üretim Hunan'daki Xikuangshan Madeni'nden geliyor. Antimon Trioksitun rafine edilmesi için endüstriyel yöntemler, kavurma ve karbon ile indirgeme veya stibnitin demir ile doğrudan indirgenmesidir.
Metalik Antimon Trioksit için en büyük uygulamalar kurşun ve kalaylı bir alaşım ve kurşun-asit pillerdeki kurşun Antimon Trioksit plakalarıdır. Antimon Trioksitlu kurşun ve kalay alaşımları, lehimler, mermiler ve kaymalı yataklar için gelişmiş özelliklere sahiptir. Antimon Trioksit bileşikleri, birçok ticari ve ev ürününde bulunan klor ve brom içeren yangın geciktiriciler için önemli katkı maddeleridir. Ortaya çıkan bir uygulama, mikroelektronikte Antimon Trioksit kullanımıdır.
2.3 Antimon Trioksititler, hidritler ve organoAntimon Trioksit bileşikleri
Antimon Trioksitun siyah allotropunu içeren bir şişe
Oksidasyon ürünleri ile doğal Antimon Trioksit
Sb, AsSb ve gri As için ortak kristal yapı
Antimon Trioksit, pniktojenler denilen elementlerden biri olan periyodik tablonun 15. grubunun bir üyesidir ve 2.05 elektronegatifliği vardır. Periyodik eğilimlere göre, kalay veya bizmuttan daha elektronegatif ve tellür veya arsenikten daha az elektronegatiftir. Antimon Trioksit, oda sıcaklığında havada kararlıdır, ancak Antimon Trioksit trioksit (Sb2O3), üretmek için ısıtıldığında oksijen ile reaksiyona girer.[4]:758
Antimon Trioksit, sert nesneler yapmak için fazla yumuşak olan 3 Mohs ölçeği sertliğine sahip gümüşi, parlak gri bir metaloittir. Çin'in Guizhou eyaletinde 1931'de Antimon Trioksit paraları verildi, ancak dayanıklılık zayıftı ve darphane kısa süre sonra kesildi.[5] Antimon Trioksit asitlere karşı dayanıklıdır.
Dört Antimon Trioksit allotropu bilinmektedir: kararlı bir metalik form ve üç metastabil form (patlayıcı, siyah ve sarı). Elementel Antimon Trioksit, kırılgan, gümüşi-beyaz parlak bir metaloittir. Yavaşça soğutulduğunda, erimiş Antimon Trioksit, arseniğin gri allotropu ile izomorfik olan trigonal bir hücrede kristalleşir. Antimon Trioksit triklorürün elektrolizinden nadir bir patlayıcı Antimon Trioksit formu oluşturulabilir. Keskin bir aletle çizildiğinde, ekzotermik bir reaksiyon meydana gelir ve beyaz dumanlar metalik Antimon Trioksit formları olarak verilir; bir havanda bir havan tokmağı ile ovulduğunda, güçlü bir patlama meydana gelir. Antimon Trioksit buharının hızlı soğutulması üzerine siyah Antimon Trioksit oluşur. Kırmızı fosfor ve siyah arsenik ile aynı kristal yapıya sahiptir, havada oksitlenir ve kendiliğinden tutuşabilir. 100 °C'de yavaş yavaş kararlı forma dönüşür. Antimon Trioksitun sarı allotropu en dengesizdir. Sadece stibinin (SbH3) -90 °C'de oksidasyonu ile üretilmiştir. Bu sıcaklığın üstünde ve ortam ışığında, bu metastabil allotrop daha kararlı olan siyah allotropa dönüşür.[6][7][8]
Elementel Antimon Trioksit, katmanların kaynaşmış, karıştırılmış, altı üyeli halkalardan oluştuğu katmanlı bir yapıya (uzay grubu R3m No. 166) sahiptir. En yakın ve en yakın komşular düzensiz bir oktahedral kompleks oluşturur ve her iki kattaki üç atom bir sonraki üç atomdan biraz daha yakındır. Bu nispeten yakın ambalajlama, 6.697 g/cm3'lük yüksek bir yoğunluğa yol açar, ancak katmanlar arasındaki zayıf bağlanma, düşük sertlik ve Antimon Trioksitun kırılganlığına yol açar.[4]:758
İzotoplar
Antimon Trioksitun iki kararlı izotopu vardır: doğal bolluğu %57.36 olan 121Sb ve doğal bolluğu %42.64 olan 123Sb. Ayrıca 35 radyoizotopu vardır. En uzun ömüre sahip izotopu 2.75 yarı ömüre sahip 125Sb'dir. Ek olarak, 29 metastabil durum karakterize edilmiştir. Bunların en kararlısı, 5.76 günlük bir yarı ömüre sahip 120m1Sb 'dir. Kararlı 123Sb'den daha hafif olan izotoplar, bazı istisnalar dışında, β+ bozunmasıyla bozunmaya eğilimlidir ve daha ağır olanlar β− bozunmasıyla bozunmaya eğilimlidir.[9]
Oluşum
Stibnit, Çin CM29287 Carnegie Doğal Tarih Müzesi örneği Hillman Mineral ve Taşlar Salonu'nda sergileniyor
Yer kabuğundaki Antimon Trioksit bolluğunun milyonda 0.2 ila 0.5 kısım, milyonda 0.5 kısımda talyum ve 0.07 ppm'de gümüş ile karşılaştırılabileceği tahmin edilmektedir.[10] Bu element bol olmasa da, 100'den fazla mineral türünde bulunur. Antimon Trioksit bazen doğal olarak bulunur (örneğin Antimon Trioksit Zirvesi'nde), ancak daha sık olarak baskın cevher minerali olan sülfit stibnitte (Sb2S3) bulunur.[10]
Bileşikler
Antimon Trioksit bileşikleri genellikle oksidasyon durumlarına göre sınıflandırılır: Sb (III) ve Sb (V).[11] +5 yükseltgenme seviyesi daha kararlıdır.
Oksitler ve Hidroksitler
Antimon Trioksit trioksit, Antimon Trioksit havada yakıldığında oluşur.[12] Gaz fazında, bileşiğin molekülü Sb4O6'dır, fakat yoğunlaşma üzerine polimerize olur.[4]Antimon Trioksit pentoksit (Sb4O10) sadece konsantre nitrik asit ile oksidasyonla oluşturulabilir.[13] Antimon Trioksit ayrıca hem Sb(III) hem de Sb(V) içeren karışık değerli bir oksit, Antimon Trioksit tetroksit (Sb2O4) oluşturur.[13] Fosfor ve arsenik oksitlerin aksine, bu oksitler amfoteriktir, iyi tanımlanmış oksoasitler oluşturmaz ve Antimon Trioksit tuzları oluşturmak için asitlerle reaksiyona girer.
Antimon Trioksitik asit Sb(OH)3 bilinmemektedir, fakat konjugat baz sodyum Antimon Trioksitit ([Na3SbO3]4), sodyum oksit ve Sb4O6 kaynaştırma üzerine oluşur.[4]:763 Geçiş metali Antimon Trioksititleri de bilinmektedir.[14]:122 Antimon Trioksitik asit sadece hidrat HSb(OH)6 olarak bulunur ve Antimon Trioksitat anyonu Sb(OH)-6 olarak tuzlar oluşturur. Bu anyonu ihtiva eden bir çözelti dehidre edildiğinde, çökelti karışık oksitler içerir.[14]:143
Birçok Antimon Trioksit cevheri, stibnit (Sb2S3), pirargirit (Ag3SbS3), zinkenit, jamesonit ve boulangerit dahil olmak üzere sülfitlerdir.[4]:757 Antimon Trioksit pentasülfit stokiyometrik değildir ve +3 oksidasyon seviyesinde ve S-S bağlarında Antimon Trioksit içerir.[15] [Sb6S10]2- ve [Sb8S13]2- gibi çeşitli tioAntimon Trioksitidler bilinmektedir.[16]
Halojenürler
Antimon Trioksit, iki halojenür serisi oluşturur: SbX3 ve SbX5. Trihalidler SbF3, SbCl3, SbBr3 ve SbI3, trigonal piramidal moleküler geometriye sahip moleküler bileşiklerdir.
Pentahalojenürler olan SbF5 ve SbCl5, gaz fazında trigonal bipiramidal moleküler geometriye sahiptir, ancak sıvı fazda SbF5 polimeriktir, oysa SbCl5 monomeriktir.[4]:761 SbF5, süperasit olan floroAntimon Trioksitik asit ("H2SbF7") yapmak için kullanılan güçlü bir Lewis asididir.

Oksihalojenürler Antimon Trioksit için arsenik ve fosfordan daha yaygındır. Antimon Trioksit trioksit, konsantre asit içinde çözünerek SbOCl ve (SbO)2SO4 gibi oksoAntimon Trioksitil bileşiklerini oluşturur.[4]:764
Antimon Trioksititler, hidritler ve organoAntimon Trioksit bileşikleri
Bu sınıftaki bileşikler genellikle Sb3- türevleri olarak tarif edilir. Antimon Trioksit, indiyum Antimon Trioksitit (InSb) ve gümüş Antimon Trioksitit (Ag3Sb) gibi metallerle Antimon Trioksititler oluşturur.[4]:760 Na3Sb ve Zn3Sb2 gibi alkali metal ve çinko Antimon Trioksititler daha reaktiftir. Bu Antimon Trioksititlerin asit ile işlenmesi, oldukça kararsız stibin (SbH3) gazını üretir:[17]
Sb3- + 3 H+ → SbH3
Stibin ayrıca Sb3+ tuzlarının sodyum borhidrür gibi hidrit reaktifleri ile işlenmesiyle de üretilebilir.[kaynak belirtilmeli] Stibin oda sıcaklığında kendiliğinden ayrışır. Stibin pozitif bir oluşum ısısına sahip olduğundan, termodinamik olarak kararsızdır ve bu nedenle Antimon Trioksit doğrudan hidrojen ile reaksiyona girmez.[11]
OrganoAntimon Trioksit bileşikleri tipik olarak Antimon Trioksit halidlerin Grignard reaktifleri ile alkilasyonuyla hazırlanır.[18] Karışık kloro-organik türevler, anyonlar ve katyonlar dahil olmak üzere hem Sb (III) hem de Sb (V) merkezleri ile çok çeşitli bileşikler bilinmektedir. Örnekler arasında Sb(C6H5)3 (trifenilstibin), Sb2(C6H5)4 (bir Sb-Sb bağı ile) ve siklik [Sb(C6H5)]n bulunur. Beş eşli organoAntimon Trioksit bileşikleri yaygındır, örnekler Sb(C6H5)5 ve ilgili birkaç halojenürdür.
Tarihçe
Antimon Trioksit için simyasal simgelerden biri
Antimon Trioksit(III) sülfür, Sb2S3, predinastik Mısır'da, kozmetik palet icat edildiğinde MÖ 3100 gibi erken bir tarihte göz kozmetiği (kohl) olarak tanınmıştır.[19]
Bir vazonun parçası olduğu söylenen ve M.Ö. 3000 yılına dayanan Antimon Trioksitdan yapılmış bir eser, Telloh, Chaldea'da (günümüzde Irak'ın bir parçası) bulundu ve Mısır'da M.Ö. 2500 ile M.Ö. 2200 yılları arasında Antimon Trioksit ile kaplanmış bakır bir nesne bulunmuştur.[6] Austen, 1892'de Herbert Gladstone tarafından yapılan bir konferansta, "günümüzdeki Antimon Trioksitun sadece yararlı bir vazoya dönüştürülemeyen son derece kırılgan ve kristal bir metal olduğunu biliyoruz ve bu nedenle bu dikkat çekici 'buluş' (yukarıda bahsedilen eser) Antimon Trioksitun kayıp biçimlendirebilme sanatını temsil etmelidir."[20]
İngiliz arkeolog Roger Moorey, eserin gerçekten bir vazo olduğuna ikna olmamıştı, Selimkhanov'un Tello nesnesini (1975'te yayınlandı) analiz ettikten sonra "metali Transkafkasya doğal Antimon Trioksituyla ilişkilendirmeye çalıştı" ve "Transkafkasya'daki Antimon Trioksit nesnelerinin tümü küçük kişisel süs eşyalarıdır."[20] Bu, kaybolan bir sanatın "Antimon Trioksitu biçimlendirebilir kılma" kanıtını zayıflatır.[20]
Romalı bilgin Büyük Plinius, Doğa Araştırmaları (Naturalis Historia) adlı kitabında Antimon Trioksit sülfürü tıbbi amaçlar için hazırlamanın çeşitli yollarını tanımladı.[21] Plinius ayrıca "erkek" ve "kadın" Antimon Trioksit biçimleri arasında bir ayrım yaptı; erkek form muhtemelen sülfürken, üstün, daha ağır ve daha az kırılgan olan kadın formunun doğal metalik Antimon Trioksit olduğundan şüphelenilmektedir.[22]
Yunan doğa bilimci Pedanius Dioscorides, Antimon Trioksit sülfürün bir hava akımı ile ısıtılarak kavrulabileceğini belirtti. Bunun metalik Antimon Trioksit ürettiği düşünülmektedir.[21]
İtalyan metalürist Vannoccio Biringuccio, Antimon Trioksitu izole etmek için bir prosedür açıkladı.
Antimon Trioksitun kasti izolasyonu, MS 815'ten önce Câbir bin Hayyan tarafından tarif edilmiştir.[23] Antimon Trioksitun izole edilmesi için bir prosedürün açıklaması daha sonra Vannoccio Biringuccio'nun 1540 De la pirotechnia adlı kitabında Georgius Agricola, De re metallica'nın daha ünlü 1556 kitabından önce verilmiştir. Bu bağlamda Agricola, metalik Antimon Trioksitun keşfiyle sıklıkla yanlış itibar görmektedir. Metalik Antimon Trioksitun hazırlanmasını anlatan Currus Triumphalis Antimon Trioksitii (Antimon Trioksit Zafer Savaş Arabası) kitabı 1604'te Almanya'da yayınlandı. 15. yüzyılda Basilius Valentinus adı altında yazılan bir Benediktin rahibi tarafından yazıldığı iddia edildi; eğer otantik olmasaydı, Biringuccio'dan önce gelirdi.[a][7][25]
Metal Antimon Trioksit 1615 yılında Alman kimyager Andreas Libavius tarafından biliniyordu ve erimiş Antimon Trioksit sülfür, tuz ve potasyum tartarat karışımına demir ilave edilerek elde edildi. Bu prosedür kristalin veya yıldızlı bir yüzeye sahip Antimon Trioksit üretti.[21]
Phlogiston teorisindeki zorlukların ortaya çıkmasıyla Antimon Trioksitun, diğer metaller gibi sülfitler, oksitler ve diğer bileşikleri oluşturan bir element olduğu kabul edildi.[21]
Yer kabuğunda doğal olarak oluşan saf Antimon Trioksitun ilk keşfi 1783'te İsveçli bilim adamı ve yerel maden bölgesi mühendisi Anton von Swab tarafından tanımlandı; tip-numune İsveç, Västmanland, Sala'daki Bergslagen madencilik bölgesindeki Sala Gümüş Madeninden toplanmıştır.[26][27]
Etimoloji
Modern diller ve geç Bizans Yunancası'nın isimlerini Antimon Trioksit olarak aldığı ortaçağ Latin formu Antimon Trioksityum'dur. Bunun kaynağı belirsizdir; tüm önerilerin hem biçim hem de yorum konusunda zorlukları vardır. Ἀντίμοναχός anti-monachos veya Fransız antimoinden popüler etimolojinin hala taraftarları vardır; bu "keşiş katili" anlamına gelir ve birçok erken simyagerin keşiş ve Antimon Trioksitun zehirli olmasıyla açıklanır.[24]
Bir başka popüler etimoloji, "metal olarak bulunamadı" veya "alaşımsız bulunamadı" şeklinde açıklanan, varsayımsal Yunanca ἀντίμόνος Antimon Trioksitos kelimesidir.[6] Lippmann, "floret" anlamına gelecek olan varsayımsal bir Yunanca kelime ανθήμόνιον anthemonion'u tahmin etti ve kimyasal veya biyolojik tozlaşmayı tanımlayan ilgili Yunanca kelimelerin (ancak bu değil) birkaç örneğini gösteriyor.[28]
Antimon Trioksityum'un ilk kullanımları, 1050–1100 yıllarında, Arapça tıbbi tedavilerin Afrikalı Constantine tarafından yapılan çevirileri içerir.[29] Birkaç otorite Antimon Trioksitium'un bazı Arapça formların karalama bozulması olduğuna inanıyor; Meyerhof onu ithmid'den türetmiştir;[30] diğer olasılıklar arasında athimar, metaloidin Arapça adı ve Yunancadan türeyen veya ona paralel olan varsayımsal bir as-stimmi vardır.[31]
Antimon Trioksitun (Sb) standart kimyasal sembolü için kısaltmayı stibiumdan türeten Jöns Jakob Berzelius itibar görür.
Antik Antimon Trioksit sözleri çoğunlukla, başlıca anlamları olarak Antimon Trioksit sülfürü olan kohl'a sahiptir.
Mısırlılar Antimon Trioksita mśdmt diyorlardı;[32][33] hiyerogliflerde, ünlüler belirsizdir, ancak kelimenin Kıpti formu ⲥⲧⲏⲙ (stēm) 'dir. Yunanca kelime, στίμμι stimmi, muhtemelen Arapça veya Mısır stm'sinden alınan bir kredi kelimesidir[24]
Üretim
2010 yılında dünya Antimon Trioksit üretimi[10]
En iyi üreticiler ve üretim hacimleri
İngiliz Jeoloji Araştırması (BGS), 2005 yılında Çin'in dünya payının yaklaşık %84'ü ile en iyi Antimon Trioksit üreticisi olduğunu ve bunu Güney Afrika, Bolivya ve Tacikistan tarafından uzaktan takip ettiğini bildirdi. Hunan eyaletindeki Xikuangshan Madeni, tahmini 2.1 milyon metrik ton mevduat ile Çin'in en büyük mevduatına sahip.[35]
ABD Jeoloji Araştırması'na göre 2016 yılında Çin, toplam Antimon Trioksit üretiminin %76,9'unu oluştururken, onu %6,9 ile Rusya ve %6,2 ile Tacikistan izledi.[36]
2016'da Antimon Trioksit üretimi[10]
Çin'in Antimon Trioksit üretiminin, kirlilik kontrolünün bir parçası olarak mayınlar ve izabe tesislerinin hükümet tarafından kapatılması nedeniyle gelecekte düşmesi bekleniyor. Özellikle 2015 yılı Ocak ayında[37] yürürlüğe giren “Stanum, Antimon Trioksit ve Merkür için Emisyon Standartları” revize edilen yeni bir çevre koruma yasası nedeniyle ekonomik üretim engelleri daha fazladır. Çin Ulusal İstatistik Bürosu'na göre, Eylül 2015'e kadar Hunan eyaletindeki (Çin'de en fazla Antimon Trioksit rezervi bulunan eyalet) Antimon Trioksit üretim kapasitesinin %50'si kullanılmamıştı.[37]
Roskill'in raporuna göre, Çin'de rapor edilen Antimon Trioksit üretimi düştü ve önümüzdeki yıllarda artması pek olası değil. Çin'de yaklaşık on yıldır önemli bir Antimon Trioksit yatağı gelişmemiştir ve kalan ekonomik rezervler hızla tükenmektedir.[38]
Roskill'e göre dünyanın en büyük Antimon Trioksit üreticileri aşağıda listelenmiştir:
2010'un en büyük Antimon Trioksit üreticileri.[39]
USGS istatistiklerine göre, mevcut küresel Antimon Trioksit rezervleri 13 yıl içinde tükenecek. Ancak USGS daha fazla kaynak bulunacağını düşünüyor.
2015 yılında dünya Antimon Trioksit rezervleri[39]
Ülke Rezervler
(ton Antimon Trioksit içeriği) % Toplam
Üretim süreci
Cevherlerden Antimon Trioksit çıkarılması, cevherin kalitesine ve bileşimine bağlıdır. Çoğu Antimon Trioksit sülfür olarak çıkarılır; düşük dereceli cevherler köpük yüzdürmesi ile konsantre edilirken, yüksek dereceli cevherler 500–600 °C'ye ısıtılır, stibnitin erime ve gang minerallerinden ayrıldığı sıcaklık. Antimon Trioksit hurda demir ile indirgenerek ham Antimon Trioksit sülfürden izole edilebilir:[40]
Sb2S3 + 3 Fe → 2 Sb + 3 FeS
Sülfit bir okside dönüştürülür; ürün daha sonra bazen geri kazanılan uçucu Antimon Trioksit(III) oksidin buharlaştırılması amacıyla kavrulur.[41] Bu malzeme genellikle doğrudan ana uygulamalar için kullanılır, safsızlıklar arsenik ve sülfürdür.[42][43] Antimon Trioksit, oksitten karbotermal bir indirgeme ile izole edilir:[40][42]
Avrupa ve ABD risk listelerinde, mevcut ekonomiyi ve yaşam tarzını sürdürmek için gereken kimyasal elementlerin veya element gruplarının tedarikine ilişkin nispi riski gösteren elementin kritikliğine ilişkin olarak, Antimon Trioksit sürekli olarak üst sıralarda yer almaktadır.
Avrupa ve ABD'ye ithal edilen Antimon Trioksitun büyük bir kısmının Çin'den gelmesi ile Çin üretimi arz açısından kritik öneme sahiptir. Çin çevresel kontrol standartlarını gözden geçirip arttırdığı için, Antimon Trioksit üretimi giderek kısıtlanmaktadır. Ayrıca, Çin'in Antimon Trioksit ihracat kotaları son yıllarda azalmaktadır. Bu iki faktör hem Avrupa hem de ABD için arz riskini artırmaktadır.
Avrupa
2015 BGS Risk Listesine göre, Antimon Trioksit nispi arz riski endeksinde (en nadir toprak elementlerinden sonra) ikinci sırada yer almaktadır.[44] Bu, şu anda İngiliz ekonomisi ve yaşam tarzı için ekonomik değeri olan kimyasal elementler veya element grupları için ikinci en yüksek arz riskine sahip olduğunu göstermektedir. Ayrıca, Antimon Trioksit 2014 yılında yayınlanan bir raporda (2011'de yayınlanan ilk raporu revize eden) AB için 20 kritik hammaddeden biri olarak tanımlanmıştır. Şekil xxx'te görüldüğü gibi, Antimon Trioksit ekonomik önemine göre yüksek arz riski taşımaktadır. Antimon Trioksitun %92'si, önemli ölçüde yüksek bir üretim konsantrasyonu olan Çin'den ithal edilmektedir.[45]
2015 yılında ABD'de herhangi bir Antimon Trioksit çıkarılmadı. Metal, yabancı ülkelerden ithal ediliyor. 2011–2014 döneminde Amerika'nın Antimon Trioksitunun %68'i Çin'den, %14'ü Hindistan'dan, %4'ü Meksika'dan ve %14'ü diğer kaynaklardan geldi. Halihazırda kamuya açık olarak bilinen hükümet stoku bulunmamaktadır.
ABD "Kritik ve Stratejik Mineral Tedarik Zincirleri Alt Komitesi" 1996–2008 yılları arasında 78 mineral kaynağı taradı. Antimon Trioksit da dahil olmak üzere küçük bir mineral alt kümesinin potansiyel olarak kritik mineraller kategorisine sürekli olarak düştüğü bulunmuştur. Gelecekte, önemli risklerin tanımlanması ve ABD çıkarları için kritik olması gereken minerallerin alt kümeleri hakkında ikinci bir değerlendirme yapılacaktır.[47]
Kullanımlar
Antimon Trioksitun yaklaşık %60'ı alev geciktiricilerde tüketilir ve %20'si piller, kaymalı yataklar ve lehimler için alaşımlarda kullanılır.[40]
Alev geciktiricileri
Antimon Trioksit esas olarak halojen içeren polimerler hariç her zaman halojenli alev geciktiricilerle kombinasyon halinde alev geçirmez bileşikler için trioksit olarak kullanılır. Antimon Trioksit trioksitin alev geciktirici etkisi,[48] hidrojen atomları ile ve muhtemelen oksijen atomları ve OH radikalleri ile reaksiyona giren ve böylece yangını önleyen halojenli Antimon Trioksit bileşiklerinin oluşumu ile üretilir.[49] Bu alev geciktiricilere yönelik pazarlar arasında çocuk giysileri, oyuncaklar, uçaklar ve otomobil koltuk kılıfları bulunmaktadır. Hafif uçak motor kapakları gibi maddeler için fiberglas kompozitlerdeki polyester reçinelere de eklenirler. Reçine, harici olarak oluşturulan bir alev varlığında yanar, ancak harici alev çıkarıldığında söner.[41][50]
Alaşımlar
Antimon Trioksit, sertliğini ve mekanik mukavemetini artırarak kurşun ile oldukça kullanışlı bir alaşım oluşturur. Kurşun içeren çoğu uygulama için, alaşım metal olarak değişen miktarlarda Antimon Trioksit kullanılır. Kurşun asitli akülerde, bu ilave plaka gücünü ve şarj özelliklerini geliştirir.[41][51] Yelkenli tekneler için kurşun ağırlıkları 272 kg ile 3628 kg arasında; kurşun omurgasının sertliğini ve gerilme mukavemetini arttırmak için Antimon Trioksit, hacimce %2 ile %5 arasında kurşun ile karıştırılır. Antimon Trioksit, sürtünme önleyici alaşımlarda (Babbitt metal gibi),[52] mermilerde, elektrik kablo kılıfında, tip metalde (örneğin, linotip baskı makineleri için[53]), lehimde (bazı "kurşunsuz" lehimler %5 Sb içerir),[54] kalayda[55] ve organ borularının imalatında düşük kalay içeriğine sahip sertleşen alaşımlarda kullanılır.
Diğer kullanımlar
Diğer üç uygulama dünyanın geri kalanının neredeyse tamamını tüketmektedir.[40] Bir uygulama, polietilen tereftalat üretimi için bir dengeleyici ve katalizördür.[40] Bir diğeri, çoğunlukla TV ekranları için camdaki mikroskopik kabarcıkların çıkarılması için bir inceltici maddedir.[56] Antimon Trioksit iyonları oksijen ile etkileşir ve sonraki kabarcık oluşturma eğilimini bastırır.[57] Üçüncü uygulama pigmentlerdir.[40]
Biyoloji ve tıbbın Antimon Trioksit için az kullanımı vardır. Antimon Trioksitiyel olarak bilinen Antimon Trioksit içeren tedaviler emetik olarak kullanılır.[58] Antimon Trioksit bileşikleri antiprotozoan ilaçlar olarak kullanılır. Potasyum Antimon Trioksitil tartrat veya tartar emetik, bir zamanlar 1919'dan itibaren bir anti-şistozomal ilaç olarak kullanıldı. Daha sonra yerini prazikuantel aldı.[59] Antimon Trioksit ve bileşikleri, gevişgetirenlerde cilt yumuşatıcı olarak antiomalin ve lityum Antimon Trioksit tiyomalat gibi çeşitli veteriner hazırlamalarda kullanılır.[60] Antimon Trioksit, hayvanlarda keratinize dokular üzerinde besleyici veya iyileştirici bir etkiye sahiptir.
Meglumin Antimon Trioksitiyat gibi Antimon Trioksit bazlı ilaçlar da evcil hayvanlarda layşmanyaz tedavisi için tercih edilen ilaçlar olarak kabul edilir. Ne yazık ki, düşük terapötik endekslere sahip olmanın yanı sıra, ilaçlar, bazı Layşmanya amastigotlarının bulunduğu kemik iliğine çok az nüfuz eder ve hastalığı tedavi etmek – özellikle visseral form – çok zordur.[61] Bir Antimon Trioksit hapı olarak elementel Antimon Trioksit bir zamanlar ilaç olarak kullanıldı. Yutma ve eliminasyondan sonra başkaları tarafından tekrar kullanılabilir.[62]
Antimon Trioksit sülfürler, otomotiv fren balatası malzemelerindeki sürtünme katsayısının dengelenmesine yardımcı olur.[63] Antimon Trioksit mermi, mermi izleyicileri,[64] boya, cam sanatı ve emayede bir opaklaştırıcı olarak kullanılır. Antimon Trioksit-124, nötron kaynaklarında berilyum ile birlikte kullanılır; Antimon Trioksit-124 tarafından yayılan gama ışınları, berilyumun fotodisintegrasyonunu başlatır.[65][66] Yayılan nötronların ortalama enerjisi 24 keV'dur.[67] Doğal Antimon Trioksit başlangıç nötron kaynaklarında kullanılır.
Tarihsel olarak, ezilmiş Antimon Trioksitdan (kohl) elde edilen toz, eski bir insanın göz enfeksiyonlarını iyileştirmeye yardımcı olduğunu düşündüğü bir metal çubukla ve birinin tükürüğü ile gözlere uygulanmıştır.[68] Uygulama hala Yemen ve diğer Arap ülkelerinde görülüyor.
Önlemler
Antimon Trioksit ve bileşiklerinin insan ve çevre sağlığı üzerindeki etkileri büyük farklılıklar göstermektedir. Elementel Antimon Trioksit metali, insan ve çevre sağlığını etkilemez. Antimon Trioksit trioksitin (ve Antimon Trioksit tozu gibi benzer az çözünür Sb(III) toz parçacıklarının) solunması zararlı olarak kabul edilir ve kansere neden olduğundan şüphelenilir. Ancak, bu etkiler sadece dişi sıçanlarda ve yüksek toz konsantrasyonlarına uzun süre maruz kaldıktan sonra gözlenir. Etkilerin, Antimon Trioksit iyonlarına maruz kalmayacak şekilde bozulmuş akciğer klerensi, akciğer aşırı yüklenmesi, iltihaplanma ve sonuçta tümör oluşumuna yol açan zayıf çözünür Sb parçacıklarının solunmasına bağlandığı varsayılmaktadır (OECD, 2008). Antimon Trioksit klorürler cildi aşındırır. Antimon Trioksitun etkileri arsenik ile karşılaştırılamaz; bunun nedeni, alım, metabolizma ve arsenik–Antimon Trioksit arasındaki atılım arasındaki önemli farklılıklar olabilir.
Oral emilim için, ICRP (1994) tartar emetik için %10 ve diğer tüm Antimon Trioksit bileşikleri için %1 değerlerini önerdi. Metaller için deri emiliminin en fazla %1 olduğu tahmin edilmektedir (HERAG, 2007). Antimon Trioksit trioksit ve diğer az çözünür Sb(III) maddelerin (Antimon Trioksit tozu gibi) soluk alma emilimi %6.8 (OECD, 2008) iken Sb(V) maddeleri için <%1'lik bir değer elde edilir. Antimon Trioksit(V), kantitatif olarak hücrede Antimon Trioksit(III)'e indirgenmez ve her iki tür de aynı anda bulunur.
Antimon Trioksit esas olarak idrar yoluyla insan vücudundan atılır. Antimon Trioksit ve bileşikleri, layşmanyaz hastalarını tedavi etmek için kasıtlı olarak kullanılan bir ön ilaç olan Antimon Trioksit potasyum tartrat ("tartar emetik") hariç, akut insan sağlığı etkilerine neden olmaz.
Antimon Trioksit tozuyla uzun süreli cilt teması dermatite neden olabilir. Ancak, Avrupa Birliği düzeyinde, gözlenen deri döküntülerinin maddeye özgü olmadığı, büyük olasılıkla ter kanallarının fiziksel olarak engellenmesi nedeniyle olduğu kabul edilmiştir (ECHA / PR / 09/09, Helsinki, 6 Temmuz 2009). Antimon Trioksit tozu da havaya yayıldığında patlayıcı olabilir; dökme bir katı halindeyken yanıcı değildir.[69]
Antimon Trioksit, güçlü asitler, halojenli asitler ve oksitleyicilerle bağdaşmaz; yeni oluşan hidrojene maruz kaldığında stibin (SbH3) oluşturabilir.[69]
8 saatlik zaman ağırlıklı ortalama (TWA), Amerikan Hükümeti Endüstriyel Hijyenistler Konferansı ve İşyerinde yasal izin verilen maruz kalma sınırı (PEL) olarak İş Sağlığı ve Güvenliği İdaresi (OSHA) tarafından 0.5 mg/m3 olarak belirlenmiştir. Ulusal İş Sağlığı ve Güvenliği Enstitüsü (NIOSH) 8 saatlik TWA olarak önerilen maruz kalma sınırını (REL) 0.5 mg/m3 olarak belirlemiştir.[69] Antimon Trioksit bileşikleri polietilen tereftalat (PET) üretimi için katalizör olarak kullanılır. Bazı çalışmalar, PET şişelerden sıvılara küçük Antimon Trioksit sızıntısı bildirmektedir, ancak seviyeler içme suyu kılavuzlarının altındadır. Meyve suyu konsantrelerindeki Antimon Trioksit konsantrasyonları biraz daha yüksekti (44.7 ug / L Antimon Trioksit'a kadar), ancak meyve suları içme suyu yönetmeliklerine girmiyor. İçme suyu yönergeleri:
DSÖ tarafından önerilen TDI, vücut ağırlığının kilogramı başına 6 µg Antimon Trioksitdur.[72] Antimon Trioksit için IDLH (yaşam ve sağlık için hemen tehlikeli) değeri 50 mg/m3'tür.[69]
Toksiklik
Özellikle Antimon Trioksit trioksit ve Antimon Trioksit potasyum tartarat gibi bazı Antimon Trioksit bileşikleri toksik olarak görünmektedir.[73] Etkiler arsenik zehirlenmesine benzer olabilir.[74] Mesleki maruziyet solunum yolu tahrişine, pnömokonyoza, ciltte Antimon Trioksit lekelerine, gastrointestinal belirtilere ve kardiyak aritmilere neden olabilir. Ek olarak, Antimon Trioksit trioksit insanlar için potansiyel olarak kanserojendir.[75]
İnsanlarda ve hayvanlarda soluma, oral veya Antimon Trioksit ve bileşiklerine dermal maruziyet sonrasında olumsuz sağlık etkileri gözlemlenmiştir.[73] Antimon Trioksit toksisitesi tipik olarak ya mesleki maruziyete bağlı olarak, tedavi sırasında ya da kazayla yutulmasından kaynaklanır. Antimon Trioksitun vücuda cilt yoluyla girip girmediği belirsizdir.[73]




ANTIMONY TRIOXIDE


Antimony trioxide trioxide
Jump to navigationJump to search
Antimony trioxide(III) oxide
Antimony trioxide(III) oxide
Names
IUPAC name
Antimony trioxide(III) oxide
Other names
Antimony trioxide sesquioxide
Antimonous oxide
Flowers of Antimony trioxide
Other anions Antimony trioxide trisulfide
Other cations Bismuth trioxide
Related compounds DiAntimony trioxide tetraoxide
Antimony trioxide pentoxide
Antimony trioxide(III) oxide is the inorganic compound with the formula Sb2O3. It is the most important commercial compound of Antimony trioxide. It is found in nature as the minerals valentinite and senarmontite.[3] Like most polymeric oxides, Sb2O3 dissolves in aqueous solutions with hydrolysis.


Contents
1 Production and properties
1.1 Re-volatilizing of crude Antimony trioxide(III) oxide
1.2 Oxidation of Antimony trioxide metal
Global production of Antimony trioxide(III) oxide in 2012 was 130,000 tonnes, an increase from 112,600 tonnes in 2002. China produces the largest share followed by US/Mexico, Europe, Japan and South Africa and other countries (2%).[4]

As of 2010, Antimony trioxide(III) oxide was produced at four sites in EU27. It is produced via two routes, re-volatilizing of crude Antimony trioxide(III) oxide and by oxidation of Antimony trioxide metal. Oxidation of Antimony trioxide metal dominates in Europe. Several processes for the production of crude Antimony trioxide(III) oxide or metallic Antimony trioxide from virgin material. The choice of process depends on the composition of the ore and other factors. Typical steps include mining, crushing and grinding of ore, sometimes followed by froth flotation and separation of the metal using pyrometallurgical processes (smelting or roasting) or in a few cases (e.g. when the ore is rich in precious metals) by hydrometallurgical processes. These steps do not take place in the EU but closer to the mining location.

Re-volatilizing of crude Antimony trioxide(III) oxide
Step 1) Crude stibnite is oxidized to crude Antimony trioxide(III) oxide using furnaces operating at approximately 500 to 1,000 °C. The reaction is the following:

2 Sb2S3 + 9 O2 → 2 Sb2O3 + 6 SO2
Step 2) The crude Antimony trioxide(III) oxide is purified by sublimation.

Oxidation of Antimony trioxide metal
Antimony trioxide metal is oxidized to Antimony trioxide(III) oxide in furnaces. The reaction is exothermic. Antimony trioxide(III) oxide is formed through sublimation and recovered in bag filters. The size of the formed particles is controlled by process conditions in furnace and gas flow. The reaction can be schematically described by:
4 Sb + 3 O2 → 2 Sb2O3
Properties
Antimony trioxide(III) oxide is an amphoteric oxide, it dissolves in aqueous sodium hydroxide solution to give the meta-antimonite NaSbO2, which can be isolated as the trihydrate. Antimony trioxide(III) oxide also dissolves in concentrated mineral acids to give the corresponding salts, which hydrolyzes upon dilution with water.[5] With nitric acid, the trioxide is oxidized to Antimony trioxide(V) oxide.[6]

When heated with carbon, the oxide is reduced to Antimony trioxide metal. With other reducing agents such as sodium borohydride or lithium aluminium hydride, the unstable and very toxic gas stibine is produced.[7] When heated with potassium bitartrate, a complex salt potassium Antimony trioxide tartrate, KSb(OH)2•C4H2O6 is formed.[6]
Sb4O6-molecule-from-senarmontite-xtal-2004-3D-balls-B.png
Antimony trioxide(III)-oxide-senarmontite-xtal-2004-3D-balls.png
Antimony trioxide(III)-oxide-valentinite-xtal-2004-3D-balls.png
The annual consumption of Antimony trioxide(III) oxide in the United States and Europe is approximately 10,000 and 25,000 tonnes, respectively. The main application is as flame retardant synergist in combination with halogenated materials. The combination of the halides and the Antimony trioxide is key to the flame-retardant action for polymers, helping to form less flammable chars. Such flame retardants are found in electrical apparatuses, textiles, leather, and coatings.[11]

Other applications:

Antimony trioxide(III) oxide is an opacifying agent for glasses, ceramics and enamels.
Some specialty pigments contain Antimony trioxide.
Antimony trioxide(III) oxide is a useful catalyst in the production of polyethylene terephthalate (PET plastic) and the vulcanization of rubber.
Safety
Antimony trioxide(III) oxide has suspected carcinogenic potential for humans.[11] Its TLV is 0.5 mg/m3, as for most Antimony trioxide compounds.[12]
No other human health hazards were identified for Antimony trioxide(III) oxide, and no risks to human health and the environment were identified from the production and use of Antimony trioxide trioxide in daily life.
Antimony Trioxide
Why am I being warned about potential exposure to antimony trioxide?
Antimony trioxide is on the Proposition 65 list because it can cause cancer.  Exposure to antimony trioxide may increase the risk of cancer.
Proposition 65 requires businesses to determine if they must provide a warning about significant exposure to listed chemicals.
What is antimony trioxide?
Antimony trioxide is a chemical used in the manufacture of some polyethylene terephthalate (PET) plastic, which is used to make food and beverage containers.  These include ovenproof or microwavable plastic trays, as well as some plastic water bottles.
Antimony trioxide is also added to some flame retardants to make them more effective in consumer products, including upholstered furniture, textiles, carpeting, plastics, and children’s products.
As of January 2020, California has banned the sale and distribution of new upholstered furniture, mattresses, and certain children’s products made for residential use if they contain more than 0.1% of certain flame retardant-related chemicals, including antimony trioxide.
How does exposure to antimony trioxide occur?
Antimony trioxide can leach into food and beverages from some containers made with antimony trioxide that are exposed to high temperatures (especially above 110 °F).
Antimony trioxide can migrate into air and dust from some products made with antimony trioxide.
During pregnancy, antimony trioxide can pass from mother to baby.
Main ways you can be exposed to antimony trioxide:
How can I reduce my exposure to antimony trioxide?
Where possible, avoid choosing products labeled as containing flame retardant chemicals, which may contain antimony trioxide.
Avoid using PET plastic containers or trays to heat food in a conventional oven or microwave.  Conventional ovens can heat food to higher temperatures, increasing the transfer of antimony trioxide from PET containers to food.
Avoid drinking beverages from PET plastic bottles left in a hot place (especially above 110 °F) such as a car or garage, for a long time.
Minimize your exposure to dust, which may contain antimony trioxide:
Antimony trioxide (Antimony oxide)
Scientific Information on Antimony Trioxide

US Department of Health and Human Services (HHS)
National Toxicology Program (NTP)
Report on Carcinogens. Monograph on Antimony Trioxide
US Environmental Protection Agency (US EPA)
TSCA Work Plan Chemical Risk Assessment. Antimony Trioxide
Antimony Oxide (Antimony trioxide)
Antimony Trioxide
This chapter reviews the physical and chemical properties, toxicokinetics, toxicological, epidemiological, and exposure data on antimony trioxide. The subcommittee used that information to characterize the health risk from exposure to antimony trioxide. The subcommittee also identified data gaps and recommended research relevant for determining the health risk from exposure to antimony trioxide.

Go to:
PHYSICAL AND CHEMICAL PROPERTIES
The physical and chemical properties of antimony trioxide are summarized in Table 10–1.

TABLE 10–1. Physical and Chemical Properties of Antimony Trioxide.
TABLE 10–1
Physical and Chemical Properties of Antimony Trioxide.

Go to:
OCCURRENCE AND USE
Antimony trioxide is formed by reacting antimony trichloride (SbCl3) with water. It is used in combination with some brominated flame retardants, and might also be used in conjunction with zinc borate, both within and outside the United States on commercial furniture, draperies, wall coverings, and carpets (R.C.Kidder, Flame Retardant Chemical Association, unpublished material, April 21, 1998). It is also used in enamels, glasses, rubber, plastics, adhesives, textiles, paper, and as a paint pigment (Budavari et al. 1989).

Go to:
TOXICOKINETICS
Absorption
Systemic toxicity and death occurred in rabbits following dermal application of 8g/kg antimony trioxide (Myers et al. 1978), and application of an unspecified dose of antimony trioxide in a paste of “artificial acidic or alkalinic sweat” (Fleming 1938). Both studies indicate that antimony trioxide is absorbed dermally in rabbits.

Elevated blood and urine antimony levels were reported in workers occupationally exposed to antimony, suggesting that antimony trioxide is absorbed following inhalation exposure (Cooper et al. 1968; Lüdersdorf et al. 1987; Kim et al. 1997). However, no quantitative correlation was found between the air concentrations of antimony and the antimony concentration measured in urine (Kim et al. 1997).

Few quantitative data were found regarding the absorption of antimony trioxide following oral exposure. The International Commission on Radiological Protection (ICRP 1981) has recommended that a 1% absorption rate of antimony compounds (including antimony trioxide) be assumed when estimating exposure from the gastrointestinal (GI) tract. That recommendation is based on studies of various organic and inorganic antimony compounds. Toxicity is greater following exposure to 7.9 mg antimony trioxide/kg-d in 5% citric acid than to 101 mg antimony trioxide/kg-d in water, suggesting that solubility can affect antimony absorption (Fleming 1938).

Distribution
No studies were identified on the tissue distribution of antimony trioxide following dermal exposure.

Retired workers occupationally exposed by the inhalation route to antimony were reported to have elevated concentrations of antimony in their lung tissue as compared to non-occupationally exposed individuals (Gerhardsson et al. 1982). Following intratracheal instillation of a single dose of 1.52 mg antimony trioxide/kg in Syrian golden hamsters, the highest concentrations of antimony were measured in the lungs and liver, with lower concentrations present in the kidney, stomach, and trachea (Leffler et al. 1984).

No information was found on the tissue distribution of antimony in humans following oral exposure. In rats, high concentrations of antimony were measured in the thyroid and GI contents following chronic ingestion of 2% antimony trioxide in the feed (Gross et al. 1955a). Detectable levels were also found in the spleen, kidney, heart, bone, muscle, lungs, liver, and GI tissue. Following continuous treatment of rats for 40 d. Antimony was concentrated in the thyroid, with much lower levels found in the other tissues 40 d after cessation of chronic ingestion of 2% antimony trioxide in the feed (Gross et al. 1955a).

Toxicokinetic studies in adult male Syrian golden hamsters given a single, intratracheal instillation of antimony trioxide (1.52 mg/kg body weight) indicate that 20% of the instilled antimony was cleared from the lung in the first 20 hr (Leffler et al. 1984). Biological half-times of about 40 hr for the initial phase and 20–40 d for the second phase were calculated for lung tissue (Leffler et al. 1984). In rats exposed to 119 mg antimony trioxide dust/m3 for 80 hr, the majority of urinary excretion occurred within the first 3 d after exposure (Gross et al. 1955a).

Following a single oral dose (200 mg antimony trioxide) of antimony trioxide to rats, 3% of the administered dose was recovered in the urine within 8 d. Only 0.15% was recovered 1 d after treatment, and 3% was recovered between d 2 and 5 post-treatment (Gross et al. 1955a). Following chronic exposure (2% antimony trioxide in the diet; 8 mo), approximately 99% of fecal excretion and the majority of urinary excretion occurred within 7 d after exposure ceased (Gross et al. 1955a). The large amount of antimony excreted in the feces soon after exposure suggests that a substantial portion of the compound is excreted without being absorbed systemically. That is consistent with the low absorption rate (1%) cited by the ICRP (ICRP 1981) (see Absorption section).

Go to:
HAZARD IDENTIFICATION1
Dermal Exposure
Irritation
Dermatitis was reported in workers occupationally exposed to 0.4–70.7 mg antimony/m3 (Renes 1953; McCallum 1963; Potkonjak and Pavlovich 1983; White et al. 1993). Although antimony trioxide in the work environment was believed to be responsible for the dermatitis, quantitative data on dermal exposure were not available, and the workers were also exposed to other elements such as arsenic. Therefore, the causative agent for the observed dermatitis could not be positively determined.

In a controlled human study (Industrial Bio-Test Laboratories, Inc. 1973), 52 subjects received a series of nine dermal applications of antimony trioxide over a 3-wk period. The antimony trioxide was applied for 24 hr; the dose was not reported. Two wk after the series of applications, a single dose of antimony trioxide was applied. After each application, skin reactions were evaluated. No skin reactions were observed over the course of the study, suggesting that antimony trioxide is neither a skin irritant nor a sensitizer.

Dermal exposure to antimony trioxide generally did not cause dermatitis in tested animals. Only mild skin irritation was observed even after repeated or prolonged exposure to large quantities of antimony trioxide (2–25 g antimony trioxide/kg) in rabbits (Gross et al. 1955a; Ebbens 1972). Skin edema was reported in one study in which antimony trioxide was applied to rabbits in corn oil (8 g antimony trioxide/kg for 24 hr) (Myers et al. 1978). However, that study is limited in that there was no solvent control group, and data on severity and number of animals responding was lacking. In a study by Haskell Laboratory (Haskell Laboratory 1970a), a suspension of 12, 31, or 61 mg antimony trioxide/kg in a fat/acetone/dioxane mixture was applied to intact shaved skin (all doses) or abraded skin (31-mg/kg group only) of 10 albino guinea pigs. The exposure duration was not reported. Irritation was not seen in any of the treated animals. In another study by Haskell Laboratory (1970b), 24 or 49 mg/kg antimony trioxide (suspended in a similar mixture as above) was applied to the intact shaved skin of guinea pigs. One day after the treatment, mild erythema was observed in 2/10 and 5/10 animals treated with 24 mg antimony trioxide/kg and 49 mg antimony trioxide/kg, respectively. All of the responses had disappeared 2 d after the initial dosing.

Sensitization
As mentioned under the Irritation section, no skin reactions were observed in the controlled human study conducted by Industrial Bio-Test Laboratories, Inc. (1973), indicating that antimony trioxide is not a skin sensitizer.

Haskell Laboratory (1970a, b) treated groups of five guinea pigs with nine dermal applications of 31 mg antimony trioxide/kg (25%) or 49 mg antimony trioxide/kg (50%) in a fat/acetone/dioxane mixture on shaved and abraded skin, or four intradermal injections of 1 mg antimony trioxide in either acetonedimethyl phthalate or propylene glycol solutions, over the course of 3 wk. After a 2-wk rest period, each group of animals received challenge applications of the suspensions on both intact and abraded skin. Sensitization was not observed in any of the test animals.

Systemic Effects
Death occurred in one out of four rabbits following a single dermal exposure to 8 g/kg antimony trioxide (Myers et al. 1978), and in one out of four rabbits exposed to 2 g/kg antimony trioxide (Ebbens 1972). Systemic toxicity and death occurred in three out of eight rabbits, but not in rats, following short-term exposure (20–21 d) to an unspecified dose of antimony trioxide (Fleming 1938). Gross pathologies were seen in the liver, lung, stomach, and kidney.

Other Systemic Effects
No studies were identified that investigated the immunological, neurological, reproductive, developmental, or carcinogenic effects of antimony trioxide following dermal exposure to antimony trioxide.

Inhalation Exposure
Systemic Effects
In humans, the lungs are the primary targets following inhalation exposure to antimony trioxide. Several studies of antimony smelter workers show that workers developed pneumoconiosis, chronic cough, and upper airway inflammation following chronic exposure to antimony trioxide (McCallum 1963, 1967; Cooper et al. 1968; Potkonjak and Pavlovich 1983). In addition, one study reported systemic effects following inhalation exposure in smelter workers, including weight loss, nausea, vomiting, nerve tenderness, and tingling (Renes 1953). In those studies, however, a causal role for antimony trioxide in the observed human health effects could not be confirmed because of the lack of individual exposure data for the workers and exposure to other compounds, including arsenic, lead, and alkali, that could be confounders.

The lungs are also the primary target tissues in animals following inhalation exposure (see Table 10–2). All experimental inhalation studies were conducted using whole-body exposure. Details of particle size and purity are provided in footnotes. Guinea pigs exposed to antimony trioxide2 (average concentration: 45.4 mg antimony trioxide/m3, 2–3 hr/d, 6 mo) developed pneumonitis, liver and spleen effects, and decreased white blood cell counts (Dernehl 1945). Similarly, pneumonia was seen following exposure of rats (100–125 mg antimony trioxide/m3, 100 hr/mo, 14.5 mo) and rabbits (89 mg antimony trioxide/m3, 100 hr/mo, 10 mo) to antimony trioxide3 (Gross et al. 1955b). Interstitial flbrosis, hypertrophy, and hyperplasia were seen in male and female Wistar rats (90/sex-group) exposed to antimony trioxide4 (45.5 mg antimony trioxide/m3, 7 hr/d, 5 d/wk for 1 yr, followed by a 20-wk observation period) (Groth et al. 1986); those effects were more pronounced in the females.

TABLE 10–2. Toxic Effects of Antimony Trioxide Following Inhalation Exposure.
TABLE 10–2
Toxic Effects of Antimony Trioxide Following Inhalation Exposure.

Watt (1983) investigated the effects of exposure to antimony trioxide5 (1.6 or 4.2 mg Sb/m3, equivalent to 1.9 or 5.0 mg antimony trioxide/m3, 6 hr/d, 5 d/wk for 1 yr) in female CDF Fischer rats (148 animals divided into three dose groups) and Sinclair S-1 miniature swine (eight animals divided into three dose groups). In rats, blood urea nitrogen (BUN) was consistently elevated at the high concentration, but was statistically significant only after 6 mo of exposure. No other changes in hematology, serum biochemistry or histology were reported. A concentration-related increase in lung weight was also observed in the rats. Swine were examined immediately after the treatment, at which time there was minimal fibrosis and no other statistically significant effects were observed.

Newton et al. (1994) conducted a preliminary, subchronic study in which male and female F-344 rats (55/sex/group) were exposed to antimony trioxide6 (concentrations of 0.25, 1.08, 4.92, and 23.46 mg antimony trioxide/m3) 6 hr/d, 5 d/wk for 13 wk followed by a 27-wk observation period. A decrease in body weight was seen in the males at the highest concentration tested and an increase in absolute lung weight was seen at the two highest exposure concentrations. Minimal-to-moderate microscopic pathologies were seen in the highest exposure group.

The Newton et al. (1994) pilot study was followed by a 1-yr chronic study (Bio/dynamics 1990, as cited in EPA 1999). In that study, F-344 rats (65/sex/ exposure level) were exposed to antimony trioxide7 (measured concentrations were 0, 0.06, 0.51, or 4.5 mg antimony trioxide/m3) 6 hr/d, 5 d/wk for 1 yr, followed by a 1-yr observation period. Five rats/sex/group were killed after 6 and 12 mo of exposure, and at 6 mo postexposure. All survivors were killed 12 mo after the end of the exposure period. Animal body weights were monitored. Complete gross and histopathological examinations were performed on all animals. The sections of the lungs examined included both the right lobes and the major bronchi. The only exposure-related changes occurred in the lungs and included chronic interstitial inflammation, granulomatous inflammation, and increased alveolar macrophages. Pinpoint black foci, thought to be aggregates of macrophages laden with antimony trioxide, were seen in the lungs of exposed animals, most frequently during the post-exposure observation period. In a subsequent analysis performed by the EPA (1999), it was noted that in the low- and mid-exposure groups, there was no indication that the particle-laden macrophages were anything but part of a normal, compensatory response. However, the clearance half-time of the high-exposure group was more than three times that of the mid-exposure group, indicating that clearance mechanisms were severely compromised. In some instances, clearance of particles is slowed by high lung burdens of inert particles, which leads to high lung particle burdens for extended periods (months to years), and pathologies that cannot be directly attributed to the toxicity of the chemical (Witschi and Last 1996). However, in this study (Newton et al. 1994), the decreased clearance appeared to be due to the inherent toxicity of antimony trioxide, rather than a particle overload phenomenon. Newton et al. (1994) reported a 50% increase in the clearance time of antimony trioxide at a dust volume of 270 nanoliter (nL), but benign dust particles have to be at about 1,000 nL to have that effect on clearance (Muhle et al. 1990, as cited in EPA 1999). However, some scientists believe that particle overload could account for the increased clearance time rather than inherent toxicity of antimony trioxide. Despite those observations, the subcommittee considered this study to be appropriate for calculation of an RfC. Based on additional statistical analysis (EPA 1999) of the male and female rats that died spontaneously or were killed at 18 and 24 mo, a LOAEL for interstitial inflammation and granulomatous inflammation of 4.5 mg antimony trioxide/m3 and a NOAEL of 0.51 mg antimony trioxide/m3 (NOAEL[HEC] of 0.042 mg antimony trioxide/m3) were identified from this study.

Belyaeva (1967) also reported a reduction in the number of offspring and a disruption of ovulation in rats exposed to 250 mg/m3 antimony trioxide for 2 mo (particle size and purity not specified).

In a study by Grin et al. (1987) that was translated for the subcommittee, pregnant rats (six to seven/group) were exposed to antimony trioxide (0.027, 0.082, and 0.27 mg antimony trioxide/m3, 24 hr/d; particle size and purity not reported) throughout gestation (21 d). Changes in clinical parameters at the highest exposure concentration tested included a very large increase in the amount of hemoglobin, blood leukocytes, serum lipids, and total protein in blood. The subcommittee noted that the effects on the hemoglobin and protein levels in the blood might indicate that the dams were sick, and therefore the maternal effects might have impacted the fetal effects. In the fetuses, gross macroscopic changes were seen at the two highest exposure concentrations tested, with increased bleeding in fetal brain membranes and liver, an increase in the size of the kidney cavity and the cerebral ventricles, and isolated cases of ossification at the highest exposure concentration tested. Some of the fetal effects in this study are listed in Table 10–3. Based on these data, 0.082 mg antimony trioxide/m3 can be considered a LOAEL and 0.027 mg antimony trioxide/m3 a NOAEL in this study (Grin et al. 1987). However, the study is of limited use for quantitative toxicity assessment purposes because of the lack of information on the purity and particle size of the antimony trioxide used and the fact that maternal toxicity was seen. Therefore, the subcommittee decided not to use the study by Grin et al. (1987) for the determination of a critical level.
Results from animal studies are also conflicting. Two animal studies reported that antimony trioxide induced lung cancers in two strains of rats (Groth et al. 1986; Watt 1983). However, additional studies in rats (Newton et al. 1994) and a study in pigs (Watt 1983) did not confirm this effect.

In a study by Groth et al. (1986), Wistar rats (90/sex/group) were exposed to antimony trioxide8 for 1 yr (target concentration=50 mg antimony trioxide/m3, 7 hr/d, 5 d/wk, killed 20 wk after end of exposure). The incidence of lung tumors was increased in female rats only, with tumors occurring in 19 of the 70 exposed females compared to 0 of the 70 control females. Of the lung tumors, nine were squamous-cell carcinomas, five were scirrhous carcinomas,9 and 11 were bronchioloalveolar adenomas and carcinomas. Some rats had more than one type of lung tumor. Rats were 8 mo of age at the beginning of exposure, and the first tumor was seen in a rat killed after wk 53.

Watt (1983) also examined the carcinogenicity of antimony trioxide in female pigs and found no neoplasms at the end of the 1-yr exposure (1.9 or 5.0 mg antimony trioxide/m3, 6 hr/d, 5 d/wk). The negative response could be due to a low sensitivity of this species, or the lack of an appropriate observation period following exposure.
TABLE 10–4. Antimony Trioxide Particle Size (Micrometers).
TABLE 10–4
Antimony Trioxide Particle Size (Micrometers).

The International Agency for Research on Cancer (IARC) classifies antimony trioxide as a possible carcinogen to humans, group 2B, based on sufficient evidence for the carcinogenicity in experimental animals (by inhalation), but inadequate evidence for the carcinogenicity in humans (IARC 1989). That assessment was completed before the publication of the negative study by Newton et al. (1994).

In summary, based on the weight of evidence, the subcommittee concluded that there is suggestive evidence that antimony trioxide is carcinogenic and a quantitative cancer risk assessment was performed based on the study by Watt (1983) (see Cancer section under Quantitative Toxicity Assessment).

Oral exposure studies conducted in animals are summarized in Table 10–5. An oral LD50 of >20 g/kg body weight has been reported in rats for antimony trioxide (Smyth and Carpenter 1948, as cited in ATSDR 1992; Ebbens 1972). Diarrhea has been reported in rats administered 16.7 g/kg body weight antimony trioxide in oil by gavage (Myers et al. 1978). The same dose in water given by gavage (Gross et al. 1955a), or provided in food (Smyth and Thompson 1945) did not produce any observable toxicity. Rats gavaged with 8.6–29 g/kg body weight antimony trioxide exhibited hypoactivity and ruffed fur within 1 hr after dosing, but returned to normal after 2 d (Ebbens 1972). No gross pathologic alterations were observed upon necropsy in that study.

No significant treatment-related effects were seen in rats following gavage with 134–501 mg/kg-bw/d antimony trioxide when administered in either 0.4% hydrochloric acid or 4% citric acid/0.4% hydrochloric acid for 20 d. Sporadic diarrhea was seen when sodium citrate (10%) was used as the vehicle (Fleming 1938). In a 21-d study, two dogs were gavaged daily with 1,000 mg antimony trioxide (79 mg/kg-bw/d) in water (Fleming 1938). The animals developed severe diarrhea, which lasted 6 or 7 d, but resolved prior to completion of the treatment, suggesting either that the diarrhea was not a severe response or that the animals adapted to the treatment. Following the 21-d treatment with antimony trioxide dissolved in water, the same dogs were administered 7.7 mg/kg-bw/d antimony trioxide dissolved in 5% citric acid for 11 d. Diarrhea, weight loss, and gastrointestinal and liver lesions were observed. Although the usefulness of this study is limited by the small number of animals used and the lack of control group, the results suggest that solubility plays a role in the toxicity of orally administered antimony trioxide (Fleming 1938).

In a short-term exposure toxicity study of antimony trioxide in which groups of 10 male albino rats received antimony trioxide in their diet (0%, 0.1%, 0.45%, 1.8%; corresponding to 0, 60, 270, 1,070 mg antimony trioxide/kg-d) for 30 d, rats in the high-dose group (1,070 mg/kg-d) had significantly decreased food consumption (41%) and decreased body weight gain (43%) compared with controls (Smyth and Thompson 1945). Hematological examination indicated that rats in the high-dose group had an increased red blood cell count but no change in hemoglobin concentration compared to controls. The high dose of 1,070 mg antimony trioxide/kg-d was considered a NOAEL for the derivation of the oral reference dose (RfD) because the subcommittee did not consider an increase in red blood cell count to be an adverse effect and because the other effects are probably related to decreased food consumption.

Rats fed with 670 mg antimony trioxide/kg bw-d in the diet for 12 wk had a decrease in overall weight gain, spleen and heart weight, and an increase in lung weight (Hiraoka 1986; as cited in ATSDR 1992). Reduced weight gain was also seen in rats given approximately 1.3 g antimony trioxide/kg bw-d in food for 240 d. No gross or microscopic changes were seen in those animals (Gross et al. 1955a).
Other Systemic Effects
No studies were identified that investigated immunological, neurological, reproductive, developmental, or carcinogenic effects of antimony trioxide following oral exposure.

Genotoxicity
Although a single oral gavage of antimony trioxide (400, 666.67, and 1,000 mg/kg) did not cause chromosome aberrations in mouse bone marrow cells, aberrations were observed following repeated administration of those doses (Gurnani et al. 1992). Repeated oral doses of antimony trioxide, however, did not cause unscheduled DNA synthesis in the liver cells of rats, or an increase in the micronucleated polychromatic erythrocytes in the mouse bone marrow micronucleus assay (Elliott et al. 1998).

Antimony trioxide was not mutagenic in Salmonella typhimurium or E. coli strains (Kanematsu et al. 1980; Kuroda et al. 1991), but it did cause sister chromotid exchange (SCE) in V79 Chinese hamster cells (Kuroda et al. 1991). DNA damage occurred following antimony trioxide treatment in Bacillus subtilis in Rec assays (Kanematsu et al. 1980; Kuroda et al. 1991).
There are inadequate dermal toxicity data on antimony trioxide to derive a reference dose for dermal exposure.

Inhalation RfC
In 1995, the EPA derived a reference concentration (RfC) value for antimony trioxide (EPA 1999) based on the study by Newton et al. (1994). The subcommittee agrees that the Newton et al. (1994) study is the critical study for the derivation of an inhalation RfC, and that the critical end points chosen by the EPA are appropriate. The subcommittee, therefore, used EPA's benchmark concentration (BMC) analysis to determine their recommended level for antimony trioxide. The BMC was calculated for chronic pulmonary inflammation,13 granulomatous inflammation, and fibrosis in males, females, and both sexes combined. The lower 95% confidence level on the concentration corresponding to a 10% extra risk of pulmonary inflammation (i.e., a 10% increase in the incidence of pulmonary inflammation) (the BMCL10) was determined. The most sensitive end point was chronic inflammation in female rats, for which the BMCL10 was 0.87 mg antimony trioxide/m3. Adjusted for intermittent exposure of 6 hr/d, 5 d/wk, the BMC10(ADJ) was 0.16 mg antimony trioxide/m3. The human equivalent concentration, BMC10 (ADJ, HEC), of that exposure was calculated to be 0.074 mg/m3 (using a regional deposited dose ratio [RDDR] for the thoracic region of 0.46). That value is similar to the HEC of 0.042 mg/m3 calculated from the NOAEL of 0.51 mg antimony trioxide/m3. The derivation of the RfC is shown in Table 10–6. To derive the RfC from the BMC10 (ADJ, HEC) of 0.16 mg antimony trioxide/m3, a composite uncertainty factor of 300 was used, which included a factor of 3 for interspecies extrapolation, a factor of 10 for intraspecies variation, a factor of 3 for database inadequacies, and a factor of 3 for a less-than-lifetime exposure that was longer than the standard subchronic study. Division of BMC10 (ADJ, HEC) by the composite uncertainty factor resulted in an RfC of 0.2 µg antimony trioxide/m3.
Oral RfD
The database for developing an oral reference dose (RfD) for antimony trioxide is limited to one high-quality subchronic feeding study in rats (Hext et al. 1999). That study is supported by data from a subchronic study in rats (Sunagawa 1981), and short-term studies in rats (Smyth and Thompson 1945) and dogs (Fleming 1938). Overall, those data indicate that the hematological system (increased serum enzymes), the liver (increased liver weights), and the gastrointestinal tract are the target organs for antimony trioxide. Based on the weight of evidence, the subcommittee considered the increases in serum enzymes in females and the increase in liver weight in males and females at 1,879 mg Sb2O3/kg bw-d to be adverse effects (Hext et al. 1999). Therefore, the LOAEL for that study is 1,879 mg antimony trioxide/kg-d and the NOAEL is 494 mg antimony trioxide/kg-d. A composite uncertainty factor of 3,000 is applied to that NOAEL to yield an RfD of approximately 0.2 mg antimony trioxide/kg-d. The composite uncertainty factor comprises a factor of 10 for interspecies extrapolation; a factor of 10 to for intraspecies variability; a factor of 10 for extrapolation from a subchronic to a chronic study; and a factor of 3 for data base deficiencies (i.e., lower than the default of 10 because there is some data that indicate there is no progression in severity of effects). A summary of the derivation of that oral RfD is provided in Table 10–7.
The carcinogenicity of antimony trioxide by the dermal route of exposure cannot be determined because of lack of data.
Because all the tumors occurred in the bronchioalveolar region and appeared to be arising from the alveolar epithelial lining cells, the three tumor types were combined, and total bronchioalveolar tumors were also modeled for the LED10. Using the combined bronchioalveolar tumor incidence yields the most conservative (health-protective) estimate of the risk, with an LED10 of 0.14 mg antimony trioxide/m3. Based on a linear extrapolation, the unit risk (cancer potency factor) of lung cancer is 7.1×10−4/µg antimony trioxide/m3.

Oral
The carcinogenicity of antimony trioxide by the oral route of exposure cannot be determined because of lack of data.
The assessment of noncancer risk by the dermal route of exposure is based on the scenario described in Chapter 3. This exposure scenario assumes that an adult spends 1/4th of his or her time sitting on furniture upholstery treated with antimony trioxide, that 1/4th of the upper torso is in contact with the upholstery, and that clothing presents no barrier. Antimony trioxide is considered to be ionic, and is essentially not absorbed through the skin. However, to be conservative, the subcommittee assumed that ionized antimony trioxide permeates the skin at the same rate as water, with a permeability rate of 10−3 cm/hr (EPA 1992). Using that permeability rate, the highest expected application rate for antimony trioxide (2.5 mg/cm2), and Equation 1 in Chapter 3, the subcommittee calculated a dermal exposure level of 2.0×10−2 mg/kg-d. The oral RfD for antimony trioxide (0.2 mg/kg-d; see Oral RfD in Quantitative Toxicity section) was used as the best estimate of the internal dose for dermal exposure. Dividing the exposure level by the oral RfD yields a hazard index of 0.1. Thus it was concluded that antimony trioxide used as a flame retardant in upholstery fabric is not likely to pose a noncancer risk by the dermal route.

Inhalation
Particles
The assessment of the noncancer risk by the inhalation route of exposure is based on the scenario described Chapter 3. This scenario corresponds to a person spending 1/4th of his or her life in a room with low air-change rate (0.25/hr) and with a relatively large amount of fabric upholstery treated with antimony trioxide (30 m2 in a 30-m3 room), with this treatment gradually being worn away over 25% of its surface to 50% of its initial quantity over the 15-yr lifetime of the fabric. A small fraction, 1%, of the worn-off antimony trioxide is released into the indoor air as inhalable particles and is breathed by the occupant. Equations 4 through 6 in Chapter 3 were used to estimate the average concentration of antimony trioxide in the air. The highest expected application rate for antimony trioxide is 2.5 mg/cm2. The estimated release rate is 2.3× 10−7/d. Using those values, the estimated time-averaged exposure concentration for antimony trioxide is 0.24 µg/m3.

Division of that exposure concentration (0.24 µg/m3) by the inhalation RfC (2×10−4 mg/m3; see Quantitative Toxicity Assessment section) results in a hazard index of 1.2, indicating that under the worst-case exposure scenario, antimony trioxide might possibly pose a noncancer risk via inhalation of particles.

Vapors
In addition to the possibility of release of antimony trioxide in particles worn from upholstery fabric, the subcommittee considered the possibility of its release by evaporation. However, because of antimony trioxide's negligible vapor pressure at ambient temperatures, the subcommittee considered antimony trioxide not likely to pose a noncancer risk by exposure to vapors.

Oral Exposure
The assessment of the noncancer risk by the oral exposure route is based on the scenario described in Chapter 3. That exposure assumes that a child sucks on 50 cm2 of fabric backcoated with antimony trioxide daily for two yr, one hr/d. The highest expected application rate (per unit time) for antimony trioxide is about 2.5 mg/cm2. The fractional release rate of antimory trioxide is estimated as 0.001/d, based on the leaching of antimony from polyvinyl chloride cot mattresses (Jenkins et al. 1998). Using those assumptions and Equation 15 in Chapter 3, the average oral dose rate is estimated to be 0.00052 mg/kg-d. Division of that exposure estimate (0.00052 mg/kg-d) by the oral RfD (0.2 mg/kg-d; see Quantitative Toxicity Assessment section) results in a hazard index of 2.6×10−3. Therefore, under the worst-case exposure assumptions, antimony trioxide, used as a flame retardant in upholstery fabric, is not likely to pose a noncancer risk by the oral route of exposure.

Cancer
There are inadequate data to assess the carcinogenicity of antimony trioxide from dermal or oral exposures.

Inhalation (Particles)
The average room-air concentration and average exposure concentration for antimony trioxide were obtained as described for the noncancer risk assessment of particles. The estimated time-averaged exposure concentration is 0.24 µg/m3. Using the inhalation unit cancer risk (cancer potency factor) of 7.1×10−4/µg antimony trioxide/m3, the lifetime excess cancer risk estimate from exposure to antimony trioxide as particles is 1.7×10−4. However, the inhalation unit risk (cancer potency factor) of antimony trioxide is itself suspect (see Hazard Identification Section). Furthermore, even if the reservations concerning the study by Watt (1983) are discounted and the inhalation unit risk is considered to be accurate, better exposure assessment is required before any definitive conclusions can be drawn about the carcinogenic risk from antimony trioxide via inhalation in the particulate phase.

Inhalation (Vapors)
Antimony trioxide has negligible vapor pressure at ambient temperatures, so antimony trioxide used as a flame retardant in upholstery fabric is not likely to pose a cancer risk for exposure to vapors.

Go to:
RECOMMENDATIONS FROM OTHER ORGANIZATIONS
The American Conference of Governmental Industrial Hygienists (ACGIH) has established a Threshold Limit Value (TLV) for antimony trioxide of 0.5 mg antimony/m3 (AGCIH 1999).

The Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH) do not have standards for exposure to antimony trioxide.

EPA's inhalation RfC of 0.2 µg antimony trioxide/mg3 is the same as that of the subcommittee.

Go to:
DATA GAPS AND RESEARCH NEEDS
There are little data on the toxicity of antimony trioxide following dermal exposure. The hazard index of 0.1 indicates that antimony trioxide is not likely to pose a non-cancer risk from dermal exposure. Therefore, the subcommittee does not recommend further research on the effects of antimony trioxide from dermal exposure for the purposes of flame-retarding upholstery furniture.

The subcommittee's risk characterization indicates that antimony trioxide might possibly pose a risk for noncancer and cancer end points via inhalation in the particulate phase. Therefore, better exposure information is essential to accurately assess the risks of antimony trioxide use as a flame retardant in upholstery fabric. If that research shows that actual exposures are substantially lower than the subcommittee's estimated levels, there will be a reduced need to perform toxicity studies. One study indicated that there are reproductive effects following inhalation of antimony trioxide. However, the purity of the antimony trioxide in that study is not known, and studies of other antimony compounds show no reproductive effects (Reprotox 1999). The study on which the quantitative toxicity assessment for cancer is based is suspect, and further studies would clarify if antimony indeed poses a cancer risk following inhalation exposure.

There are no studies that evaluated the chronic toxicity of antimony trioxide from the oral route of exposure. There are no studies that have measured exposure from the oral route. The hazard index of 2.6×10−3 indicates that antimony trioxide is not likely to pose a noncancer risk from oral exposure. Therefore, the subcommittee does not recommend further studies of antimony trioxide following oral exposure for the purposes of its use as a flame retardant in upholstery furniture fabric.

Ataman Kimya A.Ş. © 2015 Tüm Hakları Saklıdır.